File size: 5,066 Bytes
14b4bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a958bfa
14b4bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655929a
14b4bdd
 
 
 
 
 
655929a
 
14b4bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23f060
14b4bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
from transformers import AutoTokenizer
from transformers import GPT2LMHeadModel
from transformers import set_seed

import meta
from normalizer import normalize
from utils import load_json
from utils import local_css

EXAMPLES = load_json("examples.json")
CK = ""
QK = "Q:"
AK = "A:"


class TextGeneration:
    def __init__(self):
        self.debug = False
        self.dummy_output = "Destiny's Child"
        self.tokenizer = None
        self.model = None
        self.model_name_or_path = "m3hrdadfi/gpt2-QA"
        self.length_margin = 100
        set_seed(42)

    def load(self):
        if not self.debug:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
            self.model = GPT2LMHeadModel.from_pretrained(self.model_name_or_path)

    def generate(self, prompt, generation_kwargs):

        if not self.debug:
            input_ids = self.tokenizer([prompt], return_tensors="pt")["input_ids"]
            max_length = len(input_ids[0]) + self.length_margin
            max_length = min(max_length, 1024)
            generation_kwargs["max_length"] = max_length

            generated = self.model.generate(
                input_ids,
                **generation_kwargs,
            )[0]

            answer = self.tokenizer.decode(generated, skip_special_tokens=True)
            found = answer.find(f"{AK}")
            if not found:
                return ""

            answer = [a.strip() for a in answer[found:].split(f"{AK}") if a.strip()]
            answer = answer[0] if len(answer) > 0 else ""
            return answer

        return self.dummy_output


@st.cache(allow_output_mutation=True)
def load_text_generator():
    generator = TextGeneration()
    generator.load()
    return generator


def main():
    st.set_page_config(
        page_title="GPT2 QA",
        page_icon="⁉️",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    local_css("assets/style.css")
    generator = load_text_generator()

    st.sidebar.markdown(meta.SIDEBAR_INFO)
    num_beams = st.sidebar.slider(
        label='Number of Beam',
        help="Number of beams for beam search",
        min_value=4,
        max_value=15,
        value=5,
        step=1
    )
    repetition_penalty = st.sidebar.slider(
        label='Repetition Penalty',
        help="The parameter for repetition penalty",
        min_value=1.0,
        max_value=3.0,
        value=1.0,
        step=0.1
    )
    length_penalty = st.sidebar.slider(
        label='Length Penalty',
        help="Exponential penalty to the length",
        min_value=0.0,
        max_value=2.0,
        value=1.0,
        step=0.1
    )
    early_stopping = st.sidebar.selectbox(
        label='Early Stopping ?',
        options=(True, False),
        help="Whether to stop the beam search when at least num_beams sentences are finished per batch or not",
    )
    generation_kwargs = {
        "num_beams": num_beams,
        "early_stopping": early_stopping,
        "repetition_penalty": repetition_penalty,
        "length_penalty": length_penalty,
    }

    st.markdown(meta.HEADER_INFO)
    prompts = [e["title"] for e in EXAMPLES] + ["Custom"]
    prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)

    if prompt == "Custom":
        prompt_box = {
            "context": meta.C_PROMPT_BOX,
            "question": meta.Q_PROMPT_BOX,
            "answers": [meta.A_PROMPT_BOX],
        }
    else:
        prompt_box = next(e for e in EXAMPLES if e["title"] == prompt)

    context = st.text_area("Enter context", prompt_box["context"], height=200)
    question = st.text_area("Enter question", prompt_box["question"], height=100)
    answer = "Ground Truth Answers: " + \
             "".join([f"<span class='ground-truth'>{answer}</span>" for answer in prompt_box["answers"]])
    st.markdown(
        f'<p>'
        f'{answer}'
        f'<p>',
        unsafe_allow_html=True
    )
    generation_kwargs_ph = st.empty()

    if st.button("Find the answer 🔎 "):
        with st.spinner(text="Searching ..."):
            generation_kwargs_ph.markdown(", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
            context = normalize(context)
            question = normalize(question)

            if context and question:
                text = f"{context} {QK} {question} {AK}"
                generated_answer = generator.generate(text, generation_kwargs)
                generated_answer = f"{AK} {generated_answer}".strip()
                context = f"{CK} {context}".strip()
                question = f"{QK} {question}".strip()

                st.markdown(
                    f'<p>'
                    f'<span class="result-text">{context}<span><br/><br/>'
                    f'<span class="result-text">{question}<span><br/><br/>'
                    f'<span class="result-text generated-text">{generated_answer} </span>'
                    f'</p>',
                    unsafe_allow_html=True
                )


if __name__ == '__main__':
    main()