Audio_Splitter / app.py
maliahson's picture
Update app.py
639604c verified
import gradio as gr
import numpy as np
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import io
import csv
def numpy_to_audiosegment(audio_array, sampling_rate):
"""Converts a NumPy audio array into a Pydub AudioSegment."""
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
return audio_segment
def audiosegment_to_numpy(audio_segment):
"""Converts a Pydub AudioSegment back into a NumPy array."""
samples = np.array(audio_segment.get_array_of_samples())
return samples
def split_audio_on_silence(audio_segment, chunk_length_s, silence_thresh=-40, min_silence_len=500):
"""Splits audio into chunks based on silence, each chunk <= chunk_length_s."""
max_length = chunk_length_s * 1000 # Convert to milliseconds
nonsilent_ranges = detect_nonsilent(audio_segment, min_silence_len=min_silence_len, silence_thresh=silence_thresh)
chunks = []
start_time = 0
for start, end in nonsilent_ranges:
if end - start > max_length:
# Split long nonsilent sections into smaller chunks
while start + max_length <= end:
chunks.append((start, start + max_length))
start += max_length
chunks.append((start, end))
start_time = end
return chunks
def format_time(milliseconds):
"""Formats time in milliseconds to MM:SS format."""
seconds = milliseconds / 1000
minutes = int(seconds // 60)
secs = int(seconds % 60)
return f"{minutes:02}:{secs:02}"
def numpy_to_mp3(audio_array, sampling_rate):
"""Converts a numpy audio array to MP3 format."""
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
def stream(audio, chunk_length_s):
sampling_rate, array = audio
audio_segment = numpy_to_audiosegment(array, sampling_rate)
# Split the audio based on silence
chunks = split_audio_on_silence(audio_segment, chunk_length_s)
# Prepare output data
formatted_timestamps = []
for idx, (start, end) in enumerate(chunks):
# Extract the audio chunk
chunk_segment = audio_segment[start:end]
chunk_numpy = audiosegment_to_numpy(chunk_segment)
chunk_mp3 = numpy_to_mp3(chunk_numpy, sampling_rate)
# Format timestamps
start_time_formatted = format_time(start)
end_time_formatted = format_time(end)
formatted_timestamps.append((start_time_formatted, end_time_formatted))
yield chunk_mp3, formatted_timestamps
# Save timestamps to CSV
with open("silence_based_timestamps.csv", mode="w", newline="") as file:
writer = csv.writer(file)
writer.writerow(["Start Time", "End Time"])
writer.writerows(formatted_timestamps)
print(f"Timestamps saved to 'silence_based_timestamps.csv'")
print("Formatted timestamps:")
for start, end in formatted_timestamps:
print(f"{start} to {end}")
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
audio_in = gr.Audio(value="librispeech.wav", sources=["upload"], type="numpy", label="Input Audio")
chunk_length = gr.Slider(minimum=10, maximum=30, value=30, step=5, label="Max Chunk Length (s)")
run_button = gr.Button("Split on Silence")
with gr.Column():
audio_out = gr.Audio(streaming=True, autoplay=True, format="mp3", label="Streamed MP3 Audio")
timestamps_output = gr.Dataframe(
headers=["Start Time", "End Time"],
label="Silence-Based Audio Chunk Timestamps",
interactive=False
)
# Updated function outputs with the silence-based timestamps
run_button.click(
fn=stream,
inputs=[audio_in, chunk_length],
outputs=[audio_out, timestamps_output]
)
demo.launch()