Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
import librosa
|
4 |
+
from datetime import datetime
|
5 |
+
from deep_translator import GoogleTranslator
|
6 |
+
from typing import Dict, Union
|
7 |
+
from gliner import GLiNER
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Load transcription models
|
11 |
+
whisper_pipeline_agri = pipeline("automatic-speech-recognition", model="maliahson/whisper-agri")
|
12 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
# Initialize GLiNER for information extraction
|
15 |
+
gliner_model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to("cpu")
|
16 |
+
|
17 |
+
def merge_entities(entities):
|
18 |
+
if not entities:
|
19 |
+
return []
|
20 |
+
merged = []
|
21 |
+
current = entities[0]
|
22 |
+
for next_entity in entities[1:]:
|
23 |
+
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
|
24 |
+
current['word'] += ' ' + next_entity['word']
|
25 |
+
current['end'] = next_entity['end']
|
26 |
+
else:
|
27 |
+
merged.append(current)
|
28 |
+
current = next_entity
|
29 |
+
merged.append(current)
|
30 |
+
return merged
|
31 |
+
|
32 |
+
def transcribe_audio(audio_path):
|
33 |
+
"""
|
34 |
+
Transcribe a local audio file using the Whisper pipeline, log timing, and save transcription to a file.
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
# Log start time
|
38 |
+
start_time = datetime.now()
|
39 |
+
|
40 |
+
# Ensure audio is mono and resampled to 16kHz
|
41 |
+
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
|
42 |
+
|
43 |
+
# Perform transcription
|
44 |
+
transcription = whisper_pipeline_agri(audio, batch_size=8)["text"]
|
45 |
+
|
46 |
+
# Log end time
|
47 |
+
end_time = datetime.now()
|
48 |
+
|
49 |
+
return transcription
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error processing audio: {e}"
|
53 |
+
|
54 |
+
def translate_text_to_english(text):
|
55 |
+
"""
|
56 |
+
Translate text into English using GoogleTranslator.
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
# Perform translation
|
60 |
+
translated_text = GoogleTranslator(source='auto', target='en').translate(text)
|
61 |
+
return translated_text
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error during translation: {e}"
|
64 |
+
|
65 |
+
def extract_information(prompt: str, text: str, threshold: float, nested_ner: bool) -> Dict[str, Union[str, int, float]]:
|
66 |
+
"""
|
67 |
+
Extract entities from the English text using GLiNER model.
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
text = prompt + "\n" + text
|
71 |
+
entities = [
|
72 |
+
{
|
73 |
+
"entity": entity["label"],
|
74 |
+
"word": entity["text"],
|
75 |
+
"start": entity["start"],
|
76 |
+
"end": entity["end"],
|
77 |
+
"score": 0,
|
78 |
+
}
|
79 |
+
for entity in gliner_model.predict_entities(
|
80 |
+
text, ["match"], flat_ner=not nested_ner, threshold=threshold
|
81 |
+
)
|
82 |
+
]
|
83 |
+
merged_entities = merge_entities(entities)
|
84 |
+
return {"text": text, "entities": merged_entities}
|
85 |
+
except Exception as e:
|
86 |
+
return {"error": f"Information extraction failed: {e}"}
|
87 |
+
|
88 |
+
def pipeline_fn(audio, prompt, threshold, nested_ner):
|
89 |
+
"""
|
90 |
+
Combine transcription, translation, and information extraction in a single pipeline.
|
91 |
+
"""
|
92 |
+
transcription = transcribe_audio(audio)
|
93 |
+
if "Error" in transcription:
|
94 |
+
return transcription, "", "", {}
|
95 |
+
|
96 |
+
translated_text = translate_text_to_english(transcription)
|
97 |
+
if "Error" in translated_text:
|
98 |
+
return transcription, translated_text, "", {}
|
99 |
+
|
100 |
+
info_extraction = extract_information(prompt, translated_text, threshold, nested_ner)
|
101 |
+
return transcription, translated_text, info_extraction
|
102 |
+
|
103 |
+
# Gradio Interface
|
104 |
+
with gr.Blocks(title="Audio Processing and Information Extraction") as interface:
|
105 |
+
gr.Markdown("## Audio Transcription, Translation, and Information Extraction")
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
# Fixed: removed 'source' argument from gr.Audio
|
109 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
110 |
+
prompt_input = gr.Textbox(label="Prompt for Information Extraction", placeholder="Enter your prompt here")
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
threshold_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="NER Threshold")
|
114 |
+
nested_ner_checkbox = gr.Checkbox(label="Enable Nested NER")
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
transcription_output = gr.Textbox(label="Transcription (Urdu)", interactive=False) # Corrected to interactive=False
|
118 |
+
translation_output = gr.Textbox(label="Translation (English)", interactive=False) # Corrected to interactive=False
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
extraction_output = gr.HighlightedText(label="Extracted Information")
|
122 |
+
|
123 |
+
process_button = gr.Button("Process Audio")
|
124 |
+
|
125 |
+
process_button.click(
|
126 |
+
fn=pipeline_fn,
|
127 |
+
inputs=[audio_input, prompt_input, threshold_slider, nested_ner_checkbox],
|
128 |
+
outputs=[transcription_output, translation_output, extraction_output],
|
129 |
+
)
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
interface.launch()
|