Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Union
|
2 |
+
from gliner import GLiNER
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to('cpu')
|
6 |
+
|
7 |
+
|
8 |
+
def merge_entities(entities):
|
9 |
+
if not entities:
|
10 |
+
return []
|
11 |
+
merged = []
|
12 |
+
current = entities[0]
|
13 |
+
for next_entity in entities[1:]:
|
14 |
+
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
|
15 |
+
current['word'] += ' ' + next_entity['word']
|
16 |
+
current['end'] = next_entity['end']
|
17 |
+
else:
|
18 |
+
merged.append(current)
|
19 |
+
current = next_entity
|
20 |
+
merged.append(current)
|
21 |
+
return merged
|
22 |
+
|
23 |
+
def process(
|
24 |
+
prompt:str, text, threshold: float, nested_ner: bool, labels: str = ["match"]
|
25 |
+
) -> Dict[str, Union[str, int, float]]:
|
26 |
+
text = prompt + "\n" + text
|
27 |
+
r = {
|
28 |
+
"text": text,
|
29 |
+
"entities": [
|
30 |
+
{
|
31 |
+
"entity": entity["label"],
|
32 |
+
"word": entity["text"],
|
33 |
+
"start": entity["start"],
|
34 |
+
"end": entity["end"],
|
35 |
+
"score": 0,
|
36 |
+
}
|
37 |
+
for entity in model.predict_entities(
|
38 |
+
text, labels, flat_ner=not nested_ner, threshold=threshold
|
39 |
+
)
|
40 |
+
],
|
41 |
+
}
|
42 |
+
r["entities"] = merge_entities(r["entities"])
|
43 |
+
return r
|
44 |
+
|
45 |
+
with gr.Blocks(title="Open Information Extracting") as open_ie_interface:
|
46 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
|
47 |
+
input_text = gr.Textbox(label="Text input", placeholder="Enter your text here")
|
48 |
+
threshold = gr.Slider(0, 1, value=0.3, step=0.01, label="Threshold", info="Lower the threshold to increase how many entities get predicted.")
|
49 |
+
nested_ner = gr.Checkbox(label="Nested NER", info="Allow for nested NER?")
|
50 |
+
output = gr.HighlightedText(label="Predicted Entities")
|
51 |
+
submit_btn = gr.Button("Submit")
|
52 |
+
|
53 |
+
theme=gr.themes.Base()
|
54 |
+
|
55 |
+
input_text.submit(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
56 |
+
prompt.submit(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
57 |
+
threshold.release(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
58 |
+
submit_btn.click(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
59 |
+
nested_ner.change(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
|
64 |
+
open_ie_interface.launch()
|