Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Union
|
| 2 |
+
from gliner import GLiNER
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to('cpu')
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def merge_entities(entities):
|
| 9 |
+
if not entities:
|
| 10 |
+
return []
|
| 11 |
+
merged = []
|
| 12 |
+
current = entities[0]
|
| 13 |
+
for next_entity in entities[1:]:
|
| 14 |
+
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
|
| 15 |
+
current['word'] += ' ' + next_entity['word']
|
| 16 |
+
current['end'] = next_entity['end']
|
| 17 |
+
else:
|
| 18 |
+
merged.append(current)
|
| 19 |
+
current = next_entity
|
| 20 |
+
merged.append(current)
|
| 21 |
+
return merged
|
| 22 |
+
|
| 23 |
+
def process(
|
| 24 |
+
prompt:str, text, threshold: float, nested_ner: bool, labels: str = ["match"]
|
| 25 |
+
) -> Dict[str, Union[str, int, float]]:
|
| 26 |
+
text = prompt + "\n" + text
|
| 27 |
+
r = {
|
| 28 |
+
"text": text,
|
| 29 |
+
"entities": [
|
| 30 |
+
{
|
| 31 |
+
"entity": entity["label"],
|
| 32 |
+
"word": entity["text"],
|
| 33 |
+
"start": entity["start"],
|
| 34 |
+
"end": entity["end"],
|
| 35 |
+
"score": 0,
|
| 36 |
+
}
|
| 37 |
+
for entity in model.predict_entities(
|
| 38 |
+
text, labels, flat_ner=not nested_ner, threshold=threshold
|
| 39 |
+
)
|
| 40 |
+
],
|
| 41 |
+
}
|
| 42 |
+
r["entities"] = merge_entities(r["entities"])
|
| 43 |
+
return r
|
| 44 |
+
|
| 45 |
+
with gr.Blocks(title="Open Information Extracting") as open_ie_interface:
|
| 46 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
|
| 47 |
+
input_text = gr.Textbox(label="Text input", placeholder="Enter your text here")
|
| 48 |
+
threshold = gr.Slider(0, 1, value=0.3, step=0.01, label="Threshold", info="Lower the threshold to increase how many entities get predicted.")
|
| 49 |
+
nested_ner = gr.Checkbox(label="Nested NER", info="Allow for nested NER?")
|
| 50 |
+
output = gr.HighlightedText(label="Predicted Entities")
|
| 51 |
+
submit_btn = gr.Button("Submit")
|
| 52 |
+
|
| 53 |
+
theme=gr.themes.Base()
|
| 54 |
+
|
| 55 |
+
input_text.submit(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
| 56 |
+
prompt.submit(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
| 57 |
+
threshold.release(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
| 58 |
+
submit_btn.click(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
| 59 |
+
nested_ner.change(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if __name__ == "__main__":
|
| 63 |
+
|
| 64 |
+
open_ie_interface.launch()
|