Spaces:
Build error
Build error
[Docs] Add `README_zh-CN` and correct `README` format (#6)
Browse files* Create README_zh-CN.md
* Update README.md
* fix typos
- README.md +31 -28
- README_zh-CN.md +163 -0
README.md
CHANGED
@@ -6,7 +6,7 @@ Based on the open-source multi-modal model [OpenFlamingo](https://github.com/mlf
|
|
6 |
|
7 |
The **joint training** of visual and language instructions effectively improves the performance of the model!
|
8 |
|
9 |
-
Welcome to join us
|
10 |
|
11 |
<div align="center">
|
12 |
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
|
@@ -28,13 +28,14 @@ Welcome to join us!
|
|
28 |
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
|
29 |
</div>
|
30 |
|
31 |
-
|
32 |
|
33 |
- Support various vision and language instruction data
|
34 |
- Parameter efficient fine-tuning with LoRA
|
35 |
- Tuning vision and language at the same time, complement each other
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
To install the package in an existing environment, run
|
40 |
|
@@ -52,17 +53,17 @@ conda env create -f environment.yml
|
|
52 |
```
|
53 |
|
54 |
|
55 |
-
|
56 |
|
57 |
1. Download the pre-trained weights.
|
58 |
|
59 |
Use [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) for converting LLaMA weights to HuggingFace format.
|
60 |
|
61 |
-
Download the OpenFlamingo pre-trained model from [openflamingo/OpenFlamingo-9B](https://huggingface.co/openflamingo/OpenFlamingo-9B)
|
62 |
|
63 |
-
Download our LoRA Weight from [here](https://download.openmmlab.com/mmgpt/v0/mmgpt-lora-v0-release.pt)
|
64 |
|
65 |
-
Then place these models in checkpoints folders like this:
|
66 |
|
67 |
```
|
68 |
checkpoints
|
@@ -81,56 +82,58 @@ conda env create -f environment.yml
|
|
81 |
python app.py
|
82 |
```
|
83 |
|
84 |
-
|
85 |
|
86 |
### Recipe:
|
87 |

|
88 |
|
89 |
### Travel plan:
|
90 |

|
|
|
91 |
### Movie:
|
92 |

|
|
|
93 |
### Famous person:
|
94 |

|
95 |
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
1. [A-OKVQA](https://allenai.org/project/a-okvqa/home)
|
102 |
|
103 |
-
Download annotation from [this link](https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz) and unzip to `data/aokvqa/annotations
|
104 |
|
105 |
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
|
106 |
|
107 |
2. [COCO Caption](https://cs.stanford.edu/people/karpathy/deepimagesent/)
|
108 |
|
109 |
-
Download from [this link](https://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip) and unzip to `data/coco
|
110 |
|
111 |
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
|
112 |
|
113 |
3. [OCR VQA](https://ocr-vqa.github.io/)
|
114 |
|
115 |
-
Download from [this link](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing) and place in `data/OCR_VQA
|
116 |
|
117 |
4. [LlaVA](https://llava-vl.github.io/)
|
118 |
|
119 |
-
Download from [liuhaotian/LLaVA-Instruct-150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) and place in `data/llava
|
120 |
|
121 |
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
|
122 |
|
123 |
5. [Mini-GPT4](https://minigpt-4.github.io/)
|
124 |
|
125 |
-
Download from [Vision-CAIR/cc_sbu_align](https://huggingface.co/datasets/Vision-CAIR/cc_sbu_align) and place in `data/cc_sbu_align
|
126 |
|
127 |
6. [Dolly 15k](https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html)
|
128 |
|
129 |
-
Download from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and place it in `data/dolly/databricks-dolly-15k.jsonl
|
130 |
|
131 |
7. [Alpaca GPT4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
132 |
|
133 |
-
Download it from [this link](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data.json) and place it in `data/alpaca_gpt4/alpaca_gpt4_data.json
|
134 |
|
135 |
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
|
136 |
|
@@ -139,20 +142,20 @@ You can also customize the data path in the [configs/dataset_config.py](configs/
|
|
139 |
|
140 |
```bash
|
141 |
torchrun --nproc_per_node=8 mmgpt/train/instruction_finetune.py \
|
142 |
-
--lm_path checkpoints/llama-7b_hf \
|
143 |
-
--tokenizer_path checkpoints/llama-7b_hf \
|
144 |
-
--pretrained_path checkpoints/OpenFlamingo-9B/checkpoint.pt \
|
145 |
-
--run_name train-my-gpt4 \
|
146 |
-
--learning_rate 1e-5 \
|
147 |
-
--lr_scheduler cosine \
|
148 |
-
--batch_size 1 \
|
149 |
-
--tuning_config configs/lora_config.py \
|
150 |
-
--dataset_config configs/dataset_config.py \
|
151 |
-
--report_to_wandb
|
152 |
```
|
153 |
|
154 |
|
155 |
-
|
156 |
|
157 |
- [OpenFlamingo](https://github.com/mlfoundations/open_flamingo)
|
158 |
- [LAVIS](https://github.com/salesforce/LAVIS)
|
|
|
6 |
|
7 |
The **joint training** of visual and language instructions effectively improves the performance of the model!
|
8 |
|
9 |
+
Welcome to join us!
|
10 |
|
11 |
<div align="center">
|
12 |
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
|
|
|
28 |
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
|
29 |
</div>
|
30 |
|
31 |
+
## Features
|
32 |
|
33 |
- Support various vision and language instruction data
|
34 |
- Parameter efficient fine-tuning with LoRA
|
35 |
- Tuning vision and language at the same time, complement each other
|
36 |
|
37 |
+
|
38 |
+
## Installation
|
39 |
|
40 |
To install the package in an existing environment, run
|
41 |
|
|
|
53 |
```
|
54 |
|
55 |
|
56 |
+
## Demo
|
57 |
|
58 |
1. Download the pre-trained weights.
|
59 |
|
60 |
Use [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) for converting LLaMA weights to HuggingFace format.
|
61 |
|
62 |
+
Download the OpenFlamingo pre-trained model from [openflamingo/OpenFlamingo-9B](https://huggingface.co/openflamingo/OpenFlamingo-9B).
|
63 |
|
64 |
+
Download our LoRA Weight from [here](https://download.openmmlab.com/mmgpt/v0/mmgpt-lora-v0-release.pt).
|
65 |
|
66 |
+
Then place these models in `checkpoints` folders like this:
|
67 |
|
68 |
```
|
69 |
checkpoints
|
|
|
82 |
python app.py
|
83 |
```
|
84 |
|
85 |
+
## Examples
|
86 |
|
87 |
### Recipe:
|
88 |

|
89 |
|
90 |
### Travel plan:
|
91 |

|
92 |
+
|
93 |
### Movie:
|
94 |

|
95 |
+
|
96 |
### Famous person:
|
97 |

|
98 |
|
99 |
|
100 |
+
## Fine-tuning
|
101 |
|
102 |
+
### Prepare datasets
|
103 |
|
104 |
1. [A-OKVQA](https://allenai.org/project/a-okvqa/home)
|
105 |
|
106 |
+
Download annotation from [this link](https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz) and unzip to `data/aokvqa/annotations`.
|
107 |
|
108 |
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
|
109 |
|
110 |
2. [COCO Caption](https://cs.stanford.edu/people/karpathy/deepimagesent/)
|
111 |
|
112 |
+
Download from [this link](https://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip) and unzip to `data/coco`.
|
113 |
|
114 |
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
|
115 |
|
116 |
3. [OCR VQA](https://ocr-vqa.github.io/)
|
117 |
|
118 |
+
Download from [this link](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing) and place in `data/OCR_VQA/`.
|
119 |
|
120 |
4. [LlaVA](https://llava-vl.github.io/)
|
121 |
|
122 |
+
Download from [liuhaotian/LLaVA-Instruct-150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) and place in `data/llava/`.
|
123 |
|
124 |
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
|
125 |
|
126 |
5. [Mini-GPT4](https://minigpt-4.github.io/)
|
127 |
|
128 |
+
Download from [Vision-CAIR/cc_sbu_align](https://huggingface.co/datasets/Vision-CAIR/cc_sbu_align) and place in `data/cc_sbu_align/`.
|
129 |
|
130 |
6. [Dolly 15k](https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html)
|
131 |
|
132 |
+
Download from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and place it in `data/dolly/databricks-dolly-15k.jsonl`.
|
133 |
|
134 |
7. [Alpaca GPT4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
135 |
|
136 |
+
Download it from [this link](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data.json) and place it in `data/alpaca_gpt4/alpaca_gpt4_data.json`.
|
137 |
|
138 |
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
|
139 |
|
|
|
142 |
|
143 |
```bash
|
144 |
torchrun --nproc_per_node=8 mmgpt/train/instruction_finetune.py \
|
145 |
+
--lm_path checkpoints/llama-7b_hf \
|
146 |
+
--tokenizer_path checkpoints/llama-7b_hf \
|
147 |
+
--pretrained_path checkpoints/OpenFlamingo-9B/checkpoint.pt \
|
148 |
+
--run_name train-my-gpt4 \
|
149 |
+
--learning_rate 1e-5 \
|
150 |
+
--lr_scheduler cosine \
|
151 |
+
--batch_size 1 \
|
152 |
+
--tuning_config configs/lora_config.py \
|
153 |
+
--dataset_config configs/dataset_config.py \
|
154 |
+
--report_to_wandb
|
155 |
```
|
156 |
|
157 |
|
158 |
+
## Acknowledgements
|
159 |
|
160 |
- [OpenFlamingo](https://github.com/mlfoundations/open_flamingo)
|
161 |
- [LAVIS](https://github.com/salesforce/LAVIS)
|
README_zh-CN.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🤖 Multi-modal GPT
|
2 |
+
|
3 |
+
使用视觉和语言指令训练一个多模态聊天机器人!
|
4 |
+
|
5 |
+
基于开源多模态模型 [OpenFlamingo](https://github.com/mlfoundations/open_flamingo),我们使用公开数据集创建了各种**视觉指令**数据,包括视觉问答、图像字幕、视觉推理、文本 OCR 和视觉对话。此外,我们还使用仅包含**语言指令**数据的语言模型组件进行了训练。
|
6 |
+
|
7 |
+
视觉和语言指令的**联合训练**有效提高了模型的性能!
|
8 |
+
|
9 |
+
欢迎加入我们!
|
10 |
+
|
11 |
+
<div align="center">
|
12 |
+
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
|
13 |
+
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
|
14 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
15 |
+
<a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
|
16 |
+
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
|
17 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
18 |
+
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
|
19 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
|
20 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
21 |
+
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
|
22 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
|
23 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
24 |
+
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
|
25 |
+
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
|
26 |
+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
27 |
+
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
|
28 |
+
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
|
29 |
+
</div>
|
30 |
+
|
31 |
+
## 特性
|
32 |
+
|
33 |
+
- 支持各种视觉和语言指令数据
|
34 |
+
- 使用 LoRA 进行参数高效微调
|
35 |
+
- 同时调整视觉和语言,相互补充
|
36 |
+
|
37 |
+
## 安装
|
38 |
+
|
39 |
+
在一个已有环境中安装依赖包,运行以下指令
|
40 |
+
|
41 |
+
```bash
|
42 |
+
git clone https://github.com/open-mmlab/Multimodal-GPT.git
|
43 |
+
cd Multimodal-GPT
|
44 |
+
pip install -r requirements.txt
|
45 |
+
pip install -v -e .
|
46 |
+
```
|
47 |
+
|
48 |
+
或者创建一个新的 conda 环境
|
49 |
+
|
50 |
+
```bash
|
51 |
+
conda env create -f environment.yml
|
52 |
+
```
|
53 |
+
|
54 |
+
## Demo
|
55 |
+
|
56 |
+
1. 下载预训练权重
|
57 |
+
|
58 |
+
使用[这个脚本](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)把 LLaMA 权重转换成 HuggingFace 格式。
|
59 |
+
|
60 |
+
从 [openflamingo/OpenFlamingo-9B](https://huggingface.co/openflamingo/OpenFlamingo-9B) 下载 OpenFlamingo 预训练模型。
|
61 |
+
|
62 |
+
从[这个链接](https://download.openmmlab.com/mmgpt/v0/mmgpt-lora-v0-release.pt) 下载我们的 LoRA 权重。
|
63 |
+
|
64 |
+
然后把所有模型权重放到 `checkpoints` 文件夹下,目录结构如下:
|
65 |
+
|
66 |
+
```
|
67 |
+
checkpoints
|
68 |
+
├── llama-7b_hf
|
69 |
+
│ ├── config.json
|
70 |
+
│ ├── pytorch_model-00001-of-00002.bin
|
71 |
+
│ ├── ......
|
72 |
+
│ └── tokenizer.model
|
73 |
+
├── OpenFlamingo-9B
|
74 |
+
│ └──checkpoint.pt
|
75 |
+
├──mmgpt-lora-v0-release.pt
|
76 |
+
|
77 |
+
2. 启动 gradio demo
|
78 |
+
|
79 |
+
```bash
|
80 |
+
python app.py
|
81 |
+
```
|
82 |
+
|
83 |
+
## 示例
|
84 |
+
|
85 |
+
### 菜单:
|
86 |
+

|
87 |
+
|
88 |
+
### 旅行计划:
|
89 |
+

|
90 |
+
|
91 |
+
### 电影:
|
92 |
+

|
93 |
+
|
94 |
+
### 名人:
|
95 |
+

|
96 |
+
|
97 |
+
|
98 |
+
## 微调 Fine-tuning
|
99 |
+
|
100 |
+
### 准备数据集
|
101 |
+
|
102 |
+
1. [A-OKVQA](https://allenai.org/project/a-okvqa/home)
|
103 |
+
|
104 |
+
从[这个链接](https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz)下载标注,解压到 `data/aokvqa/annotations` 路径下。
|
105 |
+
|
106 |
+
同时还需要 coco 数据集的图像,可以从[这里](https://cocodataset.org/#home)下载。
|
107 |
+
|
108 |
+
2. [COCO Caption](https://cs.stanford.edu/people/karpathy/deepimagesent/)
|
109 |
+
|
110 |
+
从[这个链接](https://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip),解压到 `data/coco` 路径下。
|
111 |
+
|
112 |
+
同时还需要 coco 数据集的图像,可以从[这里](https://cocodataset.org/#home)下载。
|
113 |
+
|
114 |
+
3. [OCR VQA](https://ocr-vqa.github.io/)
|
115 |
+
|
116 |
+
从 [这个链接](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing) 下载数据集,放到 `data/OCR_VQA/` 路径下。
|
117 |
+
|
118 |
+
4. [LlaVA](https://llava-vl.github.io/)
|
119 |
+
|
120 |
+
从 [liuhaotian/LLaVA-Instruct-150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) 下载数据集,放到 `data/llava/` 路径下。
|
121 |
+
|
122 |
+
同时还需要 coco 数据集的图像,可以从[这里](https://cocodataset.org/#home)下载。
|
123 |
+
|
124 |
+
5. [Mini-GPT4](https://minigpt-4.github.io/)
|
125 |
+
|
126 |
+
从 [Vision-CAIR/cc_sbu_align](https://huggingface.co/datasets/Vision-CAIR/cc_sbu_align) 下载数据集,放到 `data/cc_sbu_align/` 路径下。
|
127 |
+
|
128 |
+
6. [Dolly 15k](https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html)
|
129 |
+
|
130 |
+
从 [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) 下载数据集,放到 `data/dolly/databricks-dolly-15k.jsonl` 路径下。
|
131 |
+
|
132 |
+
7. [Alpaca GPT4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
133 |
+
|
134 |
+
从[这个链接](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data.json) 下载数据集,放到 `data/alpaca_gpt4/alpaca_gpt4_data.json` 路径下。
|
135 |
+
|
136 |
+
你也可以在 [configs/dataset_config.py](configs/dataset_config.py) 文件中自定义数据集路径。
|
137 |
+
|
138 |
+
|
139 |
+
## 开启训练
|
140 |
+
|
141 |
+
```bash
|
142 |
+
torchrun --nproc_per_node=8 mmgpt/train/instruction_finetune.py \
|
143 |
+
--lm_path checkpoints/llama-7b_hf \
|
144 |
+
--tokenizer_path checkpoints/llama-7b_hf \
|
145 |
+
--pretrained_path checkpoints/OpenFlamingo-9B/checkpoint.pt \
|
146 |
+
--run_name train-my-gpt4 \
|
147 |
+
--learning_rate 1e-5 \
|
148 |
+
--lr_scheduler cosine \
|
149 |
+
--batch_size 1 \
|
150 |
+
--tuning_config configs/lora_config.py \
|
151 |
+
--dataset_config configs/dataset_config.py \
|
152 |
+
--report_to_wandb
|
153 |
+
```
|
154 |
+
|
155 |
+
|
156 |
+
## 致谢
|
157 |
+
|
158 |
+
- [OpenFlamingo](https://github.com/mlfoundations/open_flamingo)
|
159 |
+
- [LAVIS](https://github.com/salesforce/LAVIS)
|
160 |
+
- [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
|
161 |
+
- [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)
|
162 |
+
- [LLaVA](https://github.com/haotian-liu/LLaVA/tree/main)
|
163 |
+
- [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|