Spaces:
Build error
Build error
Add baize dataset (#25)
Browse files* add baize dataset
* add baize dataset
- .gitignore +1 -0
- README.md +4 -0
- configs/dataset_config.py +4 -0
- mmgpt/datasets/baize_dataset.py +86 -0
- mmgpt/datasets/builder.py +6 -0
.gitignore
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
wandb/
|
4 |
|
5 |
checkpoints/
|
|
|
6 |
|
7 |
# Byte-compiled / optimized / DLL files
|
8 |
__pycache__/
|
|
|
3 |
wandb/
|
4 |
|
5 |
checkpoints/
|
6 |
+
tests/
|
7 |
|
8 |
# Byte-compiled / optimized / DLL files
|
9 |
__pycache__/
|
README.md
CHANGED
@@ -145,6 +145,10 @@ conda env create -f environment.yml
|
|
145 |
|
146 |
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
|
147 |
|
|
|
|
|
|
|
|
|
148 |
|
149 |
## Start training
|
150 |
|
|
|
145 |
|
146 |
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
|
147 |
|
148 |
+
8. [Baize](https://github.com/project-baize/baize-chatbot)
|
149 |
+
|
150 |
+
Download it from [this link](https://github.com/project-baize/baize-chatbot/blob/main/data/quora_chat_data.json) and place it in `data/baize/quora_chat_data.json`.
|
151 |
+
|
152 |
|
153 |
## Start training
|
154 |
|
configs/dataset_config.py
CHANGED
@@ -57,4 +57,8 @@ language_datasets = [
|
|
57 |
type="alpaca_gpt4",
|
58 |
ann_path="data/alpaca_gpt4/alpaca_gpt4_data.json",
|
59 |
),
|
|
|
|
|
|
|
|
|
60 |
]
|
|
|
57 |
type="alpaca_gpt4",
|
58 |
ann_path="data/alpaca_gpt4/alpaca_gpt4_data.json",
|
59 |
),
|
60 |
+
dict(
|
61 |
+
type="baize",
|
62 |
+
ann_path="data/baize/quora_chat_data.json",
|
63 |
+
),
|
64 |
]
|
mmgpt/datasets/baize_dataset.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
from mmgpt.datasets.dolly_dataset import DollyDataset
|
4 |
+
|
5 |
+
|
6 |
+
TEMPLATE = {
|
7 |
+
"description": "Template used by Alpaca-LoRA.",
|
8 |
+
"prompt_choice": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{question}\n\n### Input:\n{options}\n\n### Response:\n",
|
9 |
+
"prompt_qa": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{question}\n\n### Response:\n",
|
10 |
+
"prompt_dial": "\n\n### Instruction:\n{question}\n\n### Response:\n",
|
11 |
+
"response_split": "### Response:",
|
12 |
+
}
|
13 |
+
|
14 |
+
class LangDialPrompter:
|
15 |
+
def __call__(self, question, options=None):
|
16 |
+
if options:
|
17 |
+
options = ", ".join(options)
|
18 |
+
res = TEMPLATE["prompt_choice"].format(image="<image>", question=question, options=options)
|
19 |
+
else:
|
20 |
+
res = TEMPLATE["prompt_dial"].format(question=question)
|
21 |
+
return res
|
22 |
+
|
23 |
+
def get_response(self, output: str) -> str:
|
24 |
+
return output.split(TEMPLATE["response_split"])[-1].strip()
|
25 |
+
|
26 |
+
class BaiZeDataset(DollyDataset):
|
27 |
+
"""
|
28 |
+
```json
|
29 |
+
[
|
30 |
+
{
|
31 |
+
"instruction": "Identify the odd one out.",
|
32 |
+
"input": "Twitter, Instagram, Telegram",
|
33 |
+
"output": "The odd one out is Telegram. Twitter and Instagram are social media platforms mainly for sharing information, images and videos while Telegram is a cloud-based instant messaging and voice-over-IP service."
|
34 |
+
},
|
35 |
+
]
|
36 |
+
"""
|
37 |
+
def __init__(self, *args, **kwargs):
|
38 |
+
super(BaiZeDataset, self).__init__(*args, **kwargs)
|
39 |
+
self.prompter = LangDialPrompter()
|
40 |
+
|
41 |
+
def load_annotation(self, ann_path):
|
42 |
+
self.annotation = json.load(open(ann_path, "r"))
|
43 |
+
|
44 |
+
def process_text(self, anns):
|
45 |
+
# TODO remove this
|
46 |
+
begin_string = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
47 |
+
convs = anns['input'].split("[|Human|] ")
|
48 |
+
conv_list = []
|
49 |
+
for conv_id, one_conv in enumerate(convs[1:-1]):
|
50 |
+
question, answer = one_conv.split("[|AI|] ")
|
51 |
+
question = question.replace("\n", "")
|
52 |
+
answer = answer.replace("\n", "")
|
53 |
+
instruction = self.prompter(question)
|
54 |
+
if conv_id == 0:
|
55 |
+
single_conv = dict(instruction=begin_string + instruction, answer=answer)
|
56 |
+
else:
|
57 |
+
single_conv = dict(instruction=instruction, answer=answer)
|
58 |
+
conv_list.append(single_conv)
|
59 |
+
return conv_list
|
60 |
+
|
61 |
+
def __getitem__(self, index):
|
62 |
+
ann = self.annotation[index]
|
63 |
+
text_list = self.process_text(ann)
|
64 |
+
res_list = []
|
65 |
+
for text in text_list:
|
66 |
+
single_res = self.tokenize(text)
|
67 |
+
single_res["instruction"] = text["instruction"]
|
68 |
+
single_res["answer"] = text["answer"]
|
69 |
+
res_list.append(single_res)
|
70 |
+
|
71 |
+
input_ids = []
|
72 |
+
attention_mask = []
|
73 |
+
labels = []
|
74 |
+
instruction = []
|
75 |
+
answer = []
|
76 |
+
for res in res_list:
|
77 |
+
input_ids.extend(res["input_ids"])
|
78 |
+
attention_mask.extend(res["attention_mask"])
|
79 |
+
labels.extend(res["labels"])
|
80 |
+
instruction.append(res["instruction"])
|
81 |
+
answer.append(res["answer"])
|
82 |
+
|
83 |
+
res = dict(
|
84 |
+
input_ids=input_ids, attention_mask=attention_mask, labels=labels, instruction=instruction, answer=answer
|
85 |
+
)
|
86 |
+
return res
|
mmgpt/datasets/builder.py
CHANGED
@@ -15,6 +15,7 @@ from .ocr_vqa_dataset import OCRVQADataset # noqa: F401
|
|
15 |
from .snli_ve_datasets import SNLIVEDataset # noqa: F401
|
16 |
from .text_ocr_dataset import TextOCRDataset # noqa: F401
|
17 |
from .vqa_dataset import ConcatDataset, VQADataset # noqa: F401
|
|
|
18 |
|
19 |
|
20 |
def build_dataset(dataset_config, **kwargs):
|
@@ -108,6 +109,11 @@ def build_dataset(dataset_config, **kwargs):
|
|
108 |
**dataset_config,
|
109 |
**kwargs,
|
110 |
)
|
|
|
|
|
|
|
|
|
|
|
111 |
else:
|
112 |
raise NotImplementedError
|
113 |
|
|
|
15 |
from .snli_ve_datasets import SNLIVEDataset # noqa: F401
|
16 |
from .text_ocr_dataset import TextOCRDataset # noqa: F401
|
17 |
from .vqa_dataset import ConcatDataset, VQADataset # noqa: F401
|
18 |
+
from .baize_dataset import BaiZeDataset # noqa: F401
|
19 |
|
20 |
|
21 |
def build_dataset(dataset_config, **kwargs):
|
|
|
109 |
**dataset_config,
|
110 |
**kwargs,
|
111 |
)
|
112 |
+
elif dataset_type == "baize":
|
113 |
+
dataset = BaiZeDataset(
|
114 |
+
**dataset_config,
|
115 |
+
**kwargs,
|
116 |
+
)
|
117 |
else:
|
118 |
raise NotImplementedError
|
119 |
|