Spaces:
Build error
Build error
Add baize dataset (#25)
Browse files* add baize dataset
* add baize dataset
- .gitignore +1 -0
- README.md +4 -0
- configs/dataset_config.py +4 -0
- mmgpt/datasets/baize_dataset.py +86 -0
- mmgpt/datasets/builder.py +6 -0
.gitignore
CHANGED
|
@@ -3,6 +3,7 @@
|
|
| 3 |
wandb/
|
| 4 |
|
| 5 |
checkpoints/
|
|
|
|
| 6 |
|
| 7 |
# Byte-compiled / optimized / DLL files
|
| 8 |
__pycache__/
|
|
|
|
| 3 |
wandb/
|
| 4 |
|
| 5 |
checkpoints/
|
| 6 |
+
tests/
|
| 7 |
|
| 8 |
# Byte-compiled / optimized / DLL files
|
| 9 |
__pycache__/
|
README.md
CHANGED
|
@@ -145,6 +145,10 @@ conda env create -f environment.yml
|
|
| 145 |
|
| 146 |
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
## Start training
|
| 150 |
|
|
|
|
| 145 |
|
| 146 |
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
|
| 147 |
|
| 148 |
+
8. [Baize](https://github.com/project-baize/baize-chatbot)
|
| 149 |
+
|
| 150 |
+
Download it from [this link](https://github.com/project-baize/baize-chatbot/blob/main/data/quora_chat_data.json) and place it in `data/baize/quora_chat_data.json`.
|
| 151 |
+
|
| 152 |
|
| 153 |
## Start training
|
| 154 |
|
configs/dataset_config.py
CHANGED
|
@@ -57,4 +57,8 @@ language_datasets = [
|
|
| 57 |
type="alpaca_gpt4",
|
| 58 |
ann_path="data/alpaca_gpt4/alpaca_gpt4_data.json",
|
| 59 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
]
|
|
|
|
| 57 |
type="alpaca_gpt4",
|
| 58 |
ann_path="data/alpaca_gpt4/alpaca_gpt4_data.json",
|
| 59 |
),
|
| 60 |
+
dict(
|
| 61 |
+
type="baize",
|
| 62 |
+
ann_path="data/baize/quora_chat_data.json",
|
| 63 |
+
),
|
| 64 |
]
|
mmgpt/datasets/baize_dataset.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
from mmgpt.datasets.dolly_dataset import DollyDataset
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
TEMPLATE = {
|
| 7 |
+
"description": "Template used by Alpaca-LoRA.",
|
| 8 |
+
"prompt_choice": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{question}\n\n### Input:\n{options}\n\n### Response:\n",
|
| 9 |
+
"prompt_qa": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{question}\n\n### Response:\n",
|
| 10 |
+
"prompt_dial": "\n\n### Instruction:\n{question}\n\n### Response:\n",
|
| 11 |
+
"response_split": "### Response:",
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
class LangDialPrompter:
|
| 15 |
+
def __call__(self, question, options=None):
|
| 16 |
+
if options:
|
| 17 |
+
options = ", ".join(options)
|
| 18 |
+
res = TEMPLATE["prompt_choice"].format(image="<image>", question=question, options=options)
|
| 19 |
+
else:
|
| 20 |
+
res = TEMPLATE["prompt_dial"].format(question=question)
|
| 21 |
+
return res
|
| 22 |
+
|
| 23 |
+
def get_response(self, output: str) -> str:
|
| 24 |
+
return output.split(TEMPLATE["response_split"])[-1].strip()
|
| 25 |
+
|
| 26 |
+
class BaiZeDataset(DollyDataset):
|
| 27 |
+
"""
|
| 28 |
+
```json
|
| 29 |
+
[
|
| 30 |
+
{
|
| 31 |
+
"instruction": "Identify the odd one out.",
|
| 32 |
+
"input": "Twitter, Instagram, Telegram",
|
| 33 |
+
"output": "The odd one out is Telegram. Twitter and Instagram are social media platforms mainly for sharing information, images and videos while Telegram is a cloud-based instant messaging and voice-over-IP service."
|
| 34 |
+
},
|
| 35 |
+
]
|
| 36 |
+
"""
|
| 37 |
+
def __init__(self, *args, **kwargs):
|
| 38 |
+
super(BaiZeDataset, self).__init__(*args, **kwargs)
|
| 39 |
+
self.prompter = LangDialPrompter()
|
| 40 |
+
|
| 41 |
+
def load_annotation(self, ann_path):
|
| 42 |
+
self.annotation = json.load(open(ann_path, "r"))
|
| 43 |
+
|
| 44 |
+
def process_text(self, anns):
|
| 45 |
+
# TODO remove this
|
| 46 |
+
begin_string = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
| 47 |
+
convs = anns['input'].split("[|Human|] ")
|
| 48 |
+
conv_list = []
|
| 49 |
+
for conv_id, one_conv in enumerate(convs[1:-1]):
|
| 50 |
+
question, answer = one_conv.split("[|AI|] ")
|
| 51 |
+
question = question.replace("\n", "")
|
| 52 |
+
answer = answer.replace("\n", "")
|
| 53 |
+
instruction = self.prompter(question)
|
| 54 |
+
if conv_id == 0:
|
| 55 |
+
single_conv = dict(instruction=begin_string + instruction, answer=answer)
|
| 56 |
+
else:
|
| 57 |
+
single_conv = dict(instruction=instruction, answer=answer)
|
| 58 |
+
conv_list.append(single_conv)
|
| 59 |
+
return conv_list
|
| 60 |
+
|
| 61 |
+
def __getitem__(self, index):
|
| 62 |
+
ann = self.annotation[index]
|
| 63 |
+
text_list = self.process_text(ann)
|
| 64 |
+
res_list = []
|
| 65 |
+
for text in text_list:
|
| 66 |
+
single_res = self.tokenize(text)
|
| 67 |
+
single_res["instruction"] = text["instruction"]
|
| 68 |
+
single_res["answer"] = text["answer"]
|
| 69 |
+
res_list.append(single_res)
|
| 70 |
+
|
| 71 |
+
input_ids = []
|
| 72 |
+
attention_mask = []
|
| 73 |
+
labels = []
|
| 74 |
+
instruction = []
|
| 75 |
+
answer = []
|
| 76 |
+
for res in res_list:
|
| 77 |
+
input_ids.extend(res["input_ids"])
|
| 78 |
+
attention_mask.extend(res["attention_mask"])
|
| 79 |
+
labels.extend(res["labels"])
|
| 80 |
+
instruction.append(res["instruction"])
|
| 81 |
+
answer.append(res["answer"])
|
| 82 |
+
|
| 83 |
+
res = dict(
|
| 84 |
+
input_ids=input_ids, attention_mask=attention_mask, labels=labels, instruction=instruction, answer=answer
|
| 85 |
+
)
|
| 86 |
+
return res
|
mmgpt/datasets/builder.py
CHANGED
|
@@ -15,6 +15,7 @@ from .ocr_vqa_dataset import OCRVQADataset # noqa: F401
|
|
| 15 |
from .snli_ve_datasets import SNLIVEDataset # noqa: F401
|
| 16 |
from .text_ocr_dataset import TextOCRDataset # noqa: F401
|
| 17 |
from .vqa_dataset import ConcatDataset, VQADataset # noqa: F401
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def build_dataset(dataset_config, **kwargs):
|
|
@@ -108,6 +109,11 @@ def build_dataset(dataset_config, **kwargs):
|
|
| 108 |
**dataset_config,
|
| 109 |
**kwargs,
|
| 110 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
else:
|
| 112 |
raise NotImplementedError
|
| 113 |
|
|
|
|
| 15 |
from .snli_ve_datasets import SNLIVEDataset # noqa: F401
|
| 16 |
from .text_ocr_dataset import TextOCRDataset # noqa: F401
|
| 17 |
from .vqa_dataset import ConcatDataset, VQADataset # noqa: F401
|
| 18 |
+
from .baize_dataset import BaiZeDataset # noqa: F401
|
| 19 |
|
| 20 |
|
| 21 |
def build_dataset(dataset_config, **kwargs):
|
|
|
|
| 109 |
**dataset_config,
|
| 110 |
**kwargs,
|
| 111 |
)
|
| 112 |
+
elif dataset_type == "baize":
|
| 113 |
+
dataset = BaiZeDataset(
|
| 114 |
+
**dataset_config,
|
| 115 |
+
**kwargs,
|
| 116 |
+
)
|
| 117 |
else:
|
| 118 |
raise NotImplementedError
|
| 119 |
|