Spaces:
Runtime error
Runtime error
| # Copyright (c) Microsoft Corporation. | |
| # Licensed under the MIT License. | |
| import torch.utils.data as data | |
| from PIL import Image | |
| import torchvision.transforms as transforms | |
| import numpy as np | |
| import random | |
| class BaseDataset(data.Dataset): | |
| def __init__(self): | |
| super(BaseDataset, self).__init__() | |
| def name(self): | |
| return 'BaseDataset' | |
| def initialize(self, opt): | |
| pass | |
| def get_params(opt, size): | |
| w, h = size | |
| new_h = h | |
| new_w = w | |
| if opt.resize_or_crop == 'resize_and_crop': | |
| new_h = new_w = opt.loadSize | |
| if opt.resize_or_crop == 'scale_width_and_crop': # we scale the shorter side into 256 | |
| if w<h: | |
| new_w = opt.loadSize | |
| new_h = opt.loadSize * h // w | |
| else: | |
| new_h=opt.loadSize | |
| new_w = opt.loadSize * w // h | |
| if opt.resize_or_crop=='crop_only': | |
| pass | |
| x = random.randint(0, np.maximum(0, new_w - opt.fineSize)) | |
| y = random.randint(0, np.maximum(0, new_h - opt.fineSize)) | |
| flip = random.random() > 0.5 | |
| return {'crop_pos': (x, y), 'flip': flip} | |
| def get_transform(opt, params, method=Image.BICUBIC, normalize=True): | |
| transform_list = [] | |
| if 'resize' in opt.resize_or_crop: | |
| osize = [opt.loadSize, opt.loadSize] | |
| transform_list.append(transforms.Scale(osize, method)) | |
| elif 'scale_width' in opt.resize_or_crop: | |
| # transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.loadSize, method))) ## Here , We want the shorter side to match 256, and Scale will finish it. | |
| transform_list.append(transforms.Scale(256,method)) | |
| if 'crop' in opt.resize_or_crop: | |
| if opt.isTrain: | |
| transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.fineSize))) | |
| else: | |
| if opt.test_random_crop: | |
| transform_list.append(transforms.RandomCrop(opt.fineSize)) | |
| else: | |
| transform_list.append(transforms.CenterCrop(opt.fineSize)) | |
| ## when testing, for ablation study, choose center_crop directly. | |
| if opt.resize_or_crop == 'none': | |
| base = float(2 ** opt.n_downsample_global) | |
| if opt.netG == 'local': | |
| base *= (2 ** opt.n_local_enhancers) | |
| transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) | |
| if opt.isTrain and not opt.no_flip: | |
| transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) | |
| transform_list += [transforms.ToTensor()] | |
| if normalize: | |
| transform_list += [transforms.Normalize((0.5, 0.5, 0.5), | |
| (0.5, 0.5, 0.5))] | |
| return transforms.Compose(transform_list) | |
| def normalize(): | |
| return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
| def __make_power_2(img, base, method=Image.BICUBIC): | |
| ow, oh = img.size | |
| h = int(round(oh / base) * base) | |
| w = int(round(ow / base) * base) | |
| if (h == oh) and (w == ow): | |
| return img | |
| return img.resize((w, h), method) | |
| def __scale_width(img, target_width, method=Image.BICUBIC): | |
| ow, oh = img.size | |
| if (ow == target_width): | |
| return img | |
| w = target_width | |
| h = int(target_width * oh / ow) | |
| return img.resize((w, h), method) | |
| def __crop(img, pos, size): | |
| ow, oh = img.size | |
| x1, y1 = pos | |
| tw = th = size | |
| if (ow > tw or oh > th): | |
| return img.crop((x1, y1, x1 + tw, y1 + th)) | |
| return img | |
| def __flip(img, flip): | |
| if flip: | |
| return img.transpose(Image.FLIP_LEFT_RIGHT) | |
| return img | |