Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, Request | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
app = FastAPI() | |
tokenizer = AutoTokenizer.from_pretrained("NlpHUST/vi-word-segmentation") | |
model = AutoModelForTokenClassification.from_pretrained("NlpHUST/vi-word-segmentation") | |
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer) | |
class InputText(BaseModel): | |
text: str | |
async def segment_text(payload: InputText): | |
text = payload.text | |
result = nlp(text) | |
# Convert numpy values to native Python types | |
processed_result = [] | |
for item in result: | |
processed_item = { | |
'entity': str(item['entity']), | |
'score': float(item['score']), | |
'word': str(item['word']), | |
'start': int(item['start']), | |
'end': int(item['end']) | |
} | |
processed_result.append(processed_item) | |
return processed_result | |
def greet_json(): | |
return {"Hello": "World!"} |