File size: 7,484 Bytes
30396a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import torch
from torch import nn
import gradio as gr
import heapq
import pickle
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_name = "Helsinki-NLP/opus-mt-en-zh"
# model_name = "Helsinki-NLP/opus-mt-zh-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
layer_index = model.config.decoder_layers - 1 # last decoder layer index
def save_data(outputs, src_tokens, tgt_tokens, attn_scores):
data = {'outputs': outputs, 'src_tokens': src_tokens, 'tgt_tokens': tgt_tokens, 'attn_scores': attn_scores}
# Save to file
with open("data.pkl", "wb") as f:
pickle.dump(data, f)
def get_attn_list(cross_attentions):
avg_attn_list = []
for i in range(len(cross_attentions)):
token_index = i # pick a token index from the output (1 to 18)
attn_tensor = cross_attentions[token_index][layer_index] # shape: [1, 8, 1, 24]
avg_attn_list.append(attn_tensor.squeeze(0).squeeze(1).mean(0)) # shape: [24], mean across heads
return avg_attn_list
def get_top_attns(avg_attn_list):
avg_attn_top = []
for i in range(len(avg_attn_list)):
# Get top 3 (index, value) pairs
top_3 = heapq.nlargest(3, enumerate(avg_attn_list[i]), key=lambda x: x[1])
# get the indices and values of the source tokens
top_values = [val for idx, val in top_3]
top_index = [idx for idx, val in top_3]
avg_attn_top.append({
"top_values": top_values,
"top_index": top_index
})
return avg_attn_top
# Define translation function
def translate_text(input_text):
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
with torch.no_grad():
translated = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, output_attentions=True,
num_beams=1)
outputs = tokenizer.decode(translated.sequences[0][1:][:-1])
# Decode tokens
src_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
src_tokens = [token.lstrip('▁_') for token in src_tokens]
tgt_tokens = tokenizer.convert_ids_to_tokens(translated.sequences[0])[1:]
tgt_tokens = [token.lstrip('▁_') for token in tgt_tokens]
avg_attn_list = get_attn_list(translated.cross_attentions)
attn_scores = get_top_attns(avg_attn_list)
# save_data(outputs, src_tokens, tgt_tokens, attn_scores)
return outputs, render_attention_html(src_tokens, tgt_tokens), attn_scores
def render_attention_html(src_tokens, tgt_tokens):
# Build HTML for source and target tokens
src_html = ""
for i, token in enumerate(src_tokens):
src_html += f'<span class="token src-token" data-index="{i}">{token}</span> '
tgt_html = ""
for i, token in enumerate(tgt_tokens):
tgt_html += f'<span class="token tgt-token" data-index="{i}">{token}</span> '
html = f'<div class="tgt-token-wrapper-text">Output Tokens</div><div class="tgt-token-wrapper">{tgt_html}</div><hr class="token-wrapper-seperator"><div class="src-token-wrapper-text">Input Tokens</div><div class="src-token-wrapper">{src_html}</div>'
return html
css = """
.output-html-desc {padding-top: 1rem}
.output-html {padding-top: 1rem; padding-bottom: 1rem;}
.output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);}
.token {padding: .5rem; border-radius: 5px;}
.tgt-token {cursor: pointer;}
.tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;}
.tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;}
.token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem}
.note-text {margin-bottom: 3.5rem;}
"""
js = """
function showCrossAttFun(attn_scores) {
const scrTokens = document.querySelectorAll('.src-token');
const srcLen = scrTokens.length - 1
const targetTokens = document.querySelectorAll('.tgt-token');
function onTgtHover(event, idx) {
event.style.backgroundColor = "#C6E6E6";
srcIdx0 = attn_scores[idx]['top_index'][0]
if (srcIdx0 < srcLen) {
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = "#FF8865"
}
srcIdx1 = attn_scores[idx]['top_index'][1]
if (srcIdx1 < srcLen) {
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = "#FFD2C4"
}
srcIdx2 = attn_scores[idx]['top_index'][2]
if (srcIdx2 < srcLen) {
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = "#FFF3F0"
}
}
function outHover(event, idx) {
event.style.backgroundColor = "";
srcIdx0 = attn_scores[idx]['top_index'][0]
srcIdx1 = attn_scores[idx]['top_index'][1]
srcIdx2 = attn_scores[idx]['top_index'][2]
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = ""
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = ""
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = ""
}
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onTgtHover(el, idx)
})
});
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outHover(el, idx)
})
});
}
"""
# Gradio Interface
with gr.Blocks(css=css) as demo:
gr.Markdown("""
## 🕸️ Visualize Cross Attention between Translated Text (English to Chinese)
Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text).
You can check the cross attention of the translated text in the lower section of the page.
""")
with gr.Row():
with gr.Column():
input_box = gr.Textbox(lines=4, label="Input Text (English)")
with gr.Column():
output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)")
# Examples Section
gr.Examples(
examples=[
["They heard the click of the front door and knew that the Dursleys had left the house."],
["Azkaban was a fortress where the most dangerous dark wizards were held, guarded by creatures called Dementors."]
],
inputs=[input_box]
)
translate_button = gr.Button("Translate", variant="primary")
attn = gr.JSON(value=[], visible=False)
gr.Markdown(
"""
## Check Cross Attentions
Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
output_html = gr.HTML(label="Translated Text (HTML)", elem_classes="output-html")
translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, attn])
output_box.change(None, attn, None, js=js)
gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ",
elem_classes="note-text")
demo.launch()
|