File size: 15,314 Bytes
30396a8
 
 
93559de
30396a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0d1726
 
 
 
 
30396a8
93559de
 
 
30396a8
93559de
30396a8
 
b0d1726
30396a8
 
 
 
 
 
 
 
 
23ce706
 
 
 
 
 
 
 
30396a8
 
b0d1726
 
 
93559de
 
 
 
b0d1726
93559de
b0d1726
 
 
 
93559de
b0d1726
 
 
30396a8
 
 
 
 
 
93559de
30396a8
 
 
 
 
 
23ce706
 
 
 
30396a8
 
 
93559de
30396a8
 
 
 
23ce706
 
b0d1726
 
 
 
93559de
 
 
 
30396a8
 
 
 
 
 
 
23ce706
 
30396a8
 
 
 
 
 
23ce706
 
30396a8
 
 
 
 
 
23ce706
 
30396a8
 
 
 
 
 
 
 
 
 
23ce706
 
30396a8
 
23ce706
 
30396a8
 
23ce706
 
30396a8
 
93559de
b0d1726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93559de
b0d1726
 
 
 
93559de
b0d1726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30396a8
93559de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30396a8
 
 
 
 
 
 
 
 
 
 
b0d1726
 
 
93559de
b0d1726
 
 
 
 
93559de
 
 
 
 
 
 
 
 
 
 
 
 
b0d1726
 
30396a8
 
 
 
 
 
 
b0d1726
77a9363
30396a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0d1726
 
93559de
30396a8
 
 
 
77a9363
30396a8
 
 
 
 
b0d1726
 
93559de
 
 
 
 
 
 
 
 
 
 
 
b0d1726
 
 
 
 
 
 
 
 
 
 
30396a8
93559de
30396a8
93559de
30396a8
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import torch
from torch import nn
import gradio as gr
from utils import save_data, get_attn_list, get_top_attns, get_encoder_attn_list


from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

model_name = "Helsinki-NLP/opus-mt-en-zh"
# model_name = "Helsinki-NLP/opus-mt-zh-en"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

layer_index = model.config.decoder_layers - 1  # last decoder layer index


# Define translation function
def translate_text(input_text):
    inputs = tokenizer(input_text, return_tensors="pt", padding=True)
    with torch.no_grad():
        translated = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, output_attentions=True,
                                    num_beams=1)

    outputs = tokenizer.decode(translated.sequences[0][1:][:-1])

    # Decode tokens
    src_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    src_tokens = [token.lstrip('▁_') for token in src_tokens]

    tgt_tokens = tokenizer.convert_ids_to_tokens(translated.sequences[0])[1:]
    tgt_tokens = [token.lstrip('▁_') for token in tgt_tokens]

    avg_cross_attn_list = get_attn_list(translated.cross_attentions, layer_index)
    cross_attn_scores = get_top_attns(avg_cross_attn_list)

    avg_decoder_attn_list = get_attn_list(translated.decoder_attentions, layer_index)
    decoder_attn_scores = get_top_attns(avg_decoder_attn_list)

    avg_encoder_attn_list = get_encoder_attn_list(translated.encoder_attentions, layer_index)
    encoder_attn_scores = get_top_attns(avg_encoder_attn_list)

    # save_data(outputs, src_tokens, tgt_tokens, attn_scores)
    return outputs, render_cross_attn_html(src_tokens, tgt_tokens), cross_attn_scores, render_encoder_decoder_attn_html(tgt_tokens, "Output"), decoder_attn_scores, render_encoder_decoder_attn_html(src_tokens, "Input"), encoder_attn_scores


def render_cross_attn_html(src_tokens, tgt_tokens):
    # Build HTML for source and target tokens
    src_html = ""
    for i, token in enumerate(src_tokens):
        src_html += f'<span class="token src-token" data-index="{i}">{token}</span> '

    tgt_html = ""
    for i, token in enumerate(tgt_tokens):
        tgt_html += f'<span class="token tgt-token" data-index="{i}">{token}</span> '

    html = f"""
        <div class="tgt-token-wrapper-text">Output Tokens</div>
        <div class="tgt-token-wrapper">{tgt_html}</div>
        <hr class="token-wrapper-seperator">
        <div class="src-token-wrapper-text">Input Tokens</div>
        <div class="src-token-wrapper">{src_html}</div>
        <div class="scores"><span class="score-1 score"></span><span class="score-2 score"></span><span class="score-3 score"></span><div>
        """
    return html

def render_encoder_decoder_attn_html(tokens, type):
    # Build HTML for source and target tokens
    tokens_html = ""
    className = "decoder"
    if type == "Input":
        className = "encoder"

    for i, token in enumerate(tokens):
        tokens_html += f'<span class="token {className}-token" data-index="{i}">{token}</span> '

    html = f"""
        <div class="tgt-token-wrapper-text">{type} Tokens</div>
        <div class="tgt-token-wrapper">{tokens_html}</div>
        <div class="scores"><span class="score-1 {className}-score"></span><span class="score-2 {className}-score"></span><span class="score-3 {className}-score"></span><div>
        """
    return html


css = """
.output-html-desc {padding-top: 1rem}
.output-html {padding-top: 1rem; padding-bottom: 1rem;}
.output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);}
.token {padding: .5rem; border-radius: 5px;}
.token {cursor: pointer;}
.tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;}
.tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;}
.token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem}
.note-text {margin-bottom: 3.5rem;}
.scores { position: absolute; bottom: 0.75rem; color: rgb(113, 113, 122); right: 1rem;}
.score-1 { display: none; background-color: #FF8865; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-2 { display: none; background-color: #FFD2C4; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-3 { display: none; background-color: #FFF3F0; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
"""

js = """
function showCrossAttFun(attn_scores, decoder_attn, encoder_attn) {

    const scrTokens = document.querySelectorAll('.src-token');
    const srcLen = scrTokens.length - 1
    const targetTokens = document.querySelectorAll('.tgt-token');
    const scores = document.querySelectorAll('.score');
    
    const decoderTokens = document.querySelectorAll('.decoder-token');
    const decLen = decoderTokens.length - 1
    const decoderScores = document.querySelectorAll('.decoder-score');
    
    const encoderTokens = document.querySelectorAll('.encoder-token');
    const encLen = encoderTokens.length - 1
    const encoderScores = document.querySelectorAll('.encoder-score');
    
    function onTgtHover(event, idx) {
        event.style.backgroundColor = "#C6E6E6";
        
        srcIdx0 = attn_scores[idx]['top_index'][0]
        if (srcIdx0 < srcLen) {
            srcEl0 = scrTokens[srcIdx0]
            srcEl0.style.backgroundColor = "#FF8865"
            scores[0].textContent = attn_scores[idx]['top_values'][0]
            scores[0].style.display = "initial"; 
        }
        
        srcIdx1 = attn_scores[idx]['top_index'][1]
        if (srcIdx1 < srcLen) {
            srcEl1 = scrTokens[srcIdx1]
            srcEl1.style.backgroundColor = "#FFD2C4"
            scores[1].textContent = attn_scores[idx]['top_values'][1]
            scores[1].style.display = "initial"; 
        }
        
        srcIdx2 = attn_scores[idx]['top_index'][2]
        if (srcIdx2 < srcLen) {
            srcEl2 = scrTokens[srcIdx2]
            srcEl2.style.backgroundColor = "#FFF3F0"
            scores[2].textContent = attn_scores[idx]['top_values'][2]
            scores[2].style.display = "initial"; 
        }
    }
    
    function outHover(event, idx) {
        event.style.backgroundColor = "";
        srcIdx0 = attn_scores[idx]['top_index'][0]
        srcIdx1 = attn_scores[idx]['top_index'][1]
        srcIdx2 = attn_scores[idx]['top_index'][2]
        srcEl0 = scrTokens[srcIdx0]
        srcEl0.style.backgroundColor = ""
        scores[0].textContent = ""
        scores[0].style.display = "none"; 
        srcEl1 = scrTokens[srcIdx1]
        srcEl1.style.backgroundColor = ""
        scores[1].textContent = ""
        scores[1].style.display = "none"; 
        srcEl2 = scrTokens[srcIdx2]
        srcEl2.style.backgroundColor = ""
        scores[2].textContent = ""
        scores[2].style.display = "none"; 
    }
    
    function onDecodeHover(event, idx) {
        idx0 = decoder_attn[idx]['top_index'][0]
        if (idx0 < decLen) {
            el0 = decoderTokens[idx0]
            el0.style.backgroundColor = "#FF8865"
            decoderScores[0].textContent = decoder_attn[idx]['top_values'][0]
            decoderScores[0].style.display = "initial"; 
        }
        
        idx1 = decoder_attn[idx]['top_index'][1]
        if (idx1 < decLen) {
            el1 = decoderTokens[idx1]
            el1.style.backgroundColor = "#FFD2C4"
            decoderScores[1].textContent = decoder_attn[idx]['top_values'][1]
            decoderScores[1].style.display = "initial"; 
        }
        
        idx2 = decoder_attn[idx]['top_index'][2]
        if (idx2 < decLen) {
            el2 = decoderTokens[idx2]
            el2.style.backgroundColor = "#FFF3F0"
            decoderScores[2].textContent = decoder_attn[idx]['top_values'][2]
            decoderScores[2].style.display = "initial"; 
        }
        
        for (i=idx+1; i < decoderTokens.length; i++) {
            decoderTokens[i].style.color = "#ccc9c9";
        }
        
    }
    
    function outDecodeHover(event, idx) {
        event.style.backgroundColor = "";
        idx0 = decoder_attn[idx]['top_index'][0]
        el0 = decoderTokens[idx0]
        el0.style.backgroundColor = ""
        decoderScores[0].textContent = ""
        decoderScores[0].style.display = "none"; 
        
        idx1 = decoder_attn[idx]['top_index'][1]
        if (idx1 || idx1 == 0) {
            el1 = decoderTokens[idx1]
            el1.style.backgroundColor = ""
            decoderScores[1].textContent = ""
            decoderScores[1].style.display = "none"; 
        }
        
        idx2 = decoder_attn[idx]['top_index'][2]
        if (idx2 || idx2 == 0) {
            el2 = decoderTokens[idx2]
            el2.style.backgroundColor = ""
            decoderScores[2].textContent = ""
            decoderScores[2].style.display = "none"; 
        }
        
        for (i=idx+1; i < decoderTokens.length; i++) {
            decoderTokens[i].style.color = "black";
        }
    }
    
    
    function onEncodeHover(event, idx) {
        idx0 = encoder_attn[idx]['top_index'][0]
        if (idx0 < encLen) {
            el0 = encoderTokens[idx0]
            el0.style.backgroundColor = "#89C6C6"
            encoderScores[0].textContent = encoder_attn[idx]['top_values'][0]
            encoderScores[0].style.display = "initial"
            encoderScores[0].style.backgroundColor = "#89C6C6"
        }
        
        idx1 = encoder_attn[idx]['top_index'][1]
        if (idx1 < encLen) {
            el1 = encoderTokens[idx1]
            el1.style.backgroundColor = "#C6E6E6"
            encoderScores[1].textContent = encoder_attn[idx]['top_values'][1]
            encoderScores[1].style.display = "initial"
            encoderScores[1].style.backgroundColor = "#C6E6E6"
        }
        
        idx2 = encoder_attn[idx]['top_index'][2]
        if (idx2 < encLen) {
            el2 = encoderTokens[idx2]
            el2.style.backgroundColor = "#E5F5F5"
            encoderScores[2].textContent = encoder_attn[idx]['top_values'][2]
            encoderScores[2].style.display = "initial"
            encoderScores[2].style.backgroundColor = "#E5F5F5"
        }
        
    }
    
    function outEncodeHover(event, idx) {
        event.style.backgroundColor = "";
        idx0 = encoder_attn[idx]['top_index'][0]
        el0 = encoderTokens[idx0]
        el0.style.backgroundColor = ""
        encoderScores[0].textContent = ""
        encoderScores[0].style.display = "none"; 
        
        idx1 = encoder_attn[idx]['top_index'][1]
        if (idx1 || idx1 == 0) {
            el1 = encoderTokens[idx1]
            el1.style.backgroundColor = ""
            encoderScores[1].textContent = ""
            encoderScores[1].style.display = "none"; 
        }
        
        idx2 = encoder_attn[idx]['top_index'][2]
        if (idx2 || idx2 == 0) {
            el2 = encoderTokens[idx2]
            el2.style.backgroundColor = ""
            encoderScores[2].textContent = ""
            encoderScores[2].style.display = "none"; 
        }
    }
    
    
    targetTokens.forEach((el, idx) => {
        el.addEventListener("mouseover", () => {
            onTgtHover(el, idx)
        })
    });
    
    targetTokens.forEach((el, idx) => {
        el.addEventListener("mouseout", () => {
            outHover(el, idx)
        })
    });
    
    decoderTokens.forEach((el, idx) => {
        el.addEventListener("mouseover", () => {
            onDecodeHover(el, idx)
        })
    });
    
    decoderTokens.forEach((el, idx) => {
        el.addEventListener("mouseout", () => {
            outDecodeHover(el, idx)
        })
    });
    
    encoderTokens.forEach((el, idx) => {
        el.addEventListener("mouseover", () => {
            onEncodeHover(el, idx)
        })
    });
    
    encoderTokens.forEach((el, idx) => {
        el.addEventListener("mouseout", () => {
            outEncodeHover(el, idx)
        })
    });
}
"""


# Gradio Interface
with gr.Blocks(css=css) as demo:
    gr.Markdown("""
        ## 🕸️ Visualize Attentions in Translated Text (English to Chinese)
        After translating your English input to Chinese, you can check the cross attentions and self-attentions of the translation in the lower section of the page.
    """)

    with gr.Row():
        with gr.Column():
            input_box = gr.Textbox(lines=4, label="Input Text (English)")
        with gr.Column():
            output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)")

        # Examples Section
    gr.Examples(
        examples=[
            ["They heard the click of the front door and knew that the Dursleys had left the house."],
            ["Azkaban was a fortress where the most dangerous dark wizards were held, guarded by creatures called Dementors."]
        ],
        inputs=[input_box]
    )

    translate_button = gr.Button("Translate", variant="primary")

    cross_attn = gr.JSON(value=[], visible=False)
    decoder_attn = gr.JSON(value=[], visible=False)
    encoder_attn = gr.JSON(value=[], visible=False)

    gr.Markdown(
        """
            ## Check Cross Attentions
            Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text).
            Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to.
            """,
        elem_classes="output-html-desc"
    )
    with gr.Row(elem_classes="output-html-row"):
        output_html = gr.HTML(label="Cross Attention", elem_classes="output-html")

    gr.Markdown(
        """
            ## Check Self Attentions for Encoder
            Hover your mouse over an input (English) word/token to see which word/token it is self-attending to.
            """,
        elem_classes="output-html-desc"
    )

    with gr.Row(elem_classes="output-html-row"):
        encoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")


    gr.Markdown(
        """
            ## Check Self Attentions for Decoder
            Hover your mouse over an output (Chinese) word/token to see which word/token it is self-attending to.
            Notice that decoder tokens only attend to tokens on its left as during the generation of each token,  it pays attention only to the past not to the future.
            """,
        elem_classes="output-html-desc"
    )

    with gr.Row(elem_classes="output-html-row"):
        decoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")

    translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, cross_attn, decoder_output_html, decoder_attn, encoder_output_html, encoder_attn])

    output_box.change(None, [cross_attn, decoder_attn, encoder_attn], None, js=js)

    gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ",
                elem_classes="note-text")



demo.launch()