File size: 15,314 Bytes
30396a8 93559de 30396a8 b0d1726 30396a8 93559de 30396a8 93559de 30396a8 b0d1726 30396a8 23ce706 30396a8 b0d1726 93559de b0d1726 93559de b0d1726 93559de b0d1726 30396a8 93559de 30396a8 23ce706 30396a8 93559de 30396a8 23ce706 b0d1726 93559de 30396a8 23ce706 30396a8 23ce706 30396a8 23ce706 30396a8 23ce706 30396a8 23ce706 30396a8 23ce706 30396a8 93559de b0d1726 93559de b0d1726 93559de b0d1726 30396a8 93559de 30396a8 b0d1726 93559de b0d1726 93559de b0d1726 30396a8 b0d1726 77a9363 30396a8 b0d1726 93559de 30396a8 77a9363 30396a8 b0d1726 93559de b0d1726 30396a8 93559de 30396a8 93559de 30396a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import torch
from torch import nn
import gradio as gr
from utils import save_data, get_attn_list, get_top_attns, get_encoder_attn_list
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_name = "Helsinki-NLP/opus-mt-en-zh"
# model_name = "Helsinki-NLP/opus-mt-zh-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
layer_index = model.config.decoder_layers - 1 # last decoder layer index
# Define translation function
def translate_text(input_text):
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
with torch.no_grad():
translated = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, output_attentions=True,
num_beams=1)
outputs = tokenizer.decode(translated.sequences[0][1:][:-1])
# Decode tokens
src_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
src_tokens = [token.lstrip('▁_') for token in src_tokens]
tgt_tokens = tokenizer.convert_ids_to_tokens(translated.sequences[0])[1:]
tgt_tokens = [token.lstrip('▁_') for token in tgt_tokens]
avg_cross_attn_list = get_attn_list(translated.cross_attentions, layer_index)
cross_attn_scores = get_top_attns(avg_cross_attn_list)
avg_decoder_attn_list = get_attn_list(translated.decoder_attentions, layer_index)
decoder_attn_scores = get_top_attns(avg_decoder_attn_list)
avg_encoder_attn_list = get_encoder_attn_list(translated.encoder_attentions, layer_index)
encoder_attn_scores = get_top_attns(avg_encoder_attn_list)
# save_data(outputs, src_tokens, tgt_tokens, attn_scores)
return outputs, render_cross_attn_html(src_tokens, tgt_tokens), cross_attn_scores, render_encoder_decoder_attn_html(tgt_tokens, "Output"), decoder_attn_scores, render_encoder_decoder_attn_html(src_tokens, "Input"), encoder_attn_scores
def render_cross_attn_html(src_tokens, tgt_tokens):
# Build HTML for source and target tokens
src_html = ""
for i, token in enumerate(src_tokens):
src_html += f'<span class="token src-token" data-index="{i}">{token}</span> '
tgt_html = ""
for i, token in enumerate(tgt_tokens):
tgt_html += f'<span class="token tgt-token" data-index="{i}">{token}</span> '
html = f"""
<div class="tgt-token-wrapper-text">Output Tokens</div>
<div class="tgt-token-wrapper">{tgt_html}</div>
<hr class="token-wrapper-seperator">
<div class="src-token-wrapper-text">Input Tokens</div>
<div class="src-token-wrapper">{src_html}</div>
<div class="scores"><span class="score-1 score"></span><span class="score-2 score"></span><span class="score-3 score"></span><div>
"""
return html
def render_encoder_decoder_attn_html(tokens, type):
# Build HTML for source and target tokens
tokens_html = ""
className = "decoder"
if type == "Input":
className = "encoder"
for i, token in enumerate(tokens):
tokens_html += f'<span class="token {className}-token" data-index="{i}">{token}</span> '
html = f"""
<div class="tgt-token-wrapper-text">{type} Tokens</div>
<div class="tgt-token-wrapper">{tokens_html}</div>
<div class="scores"><span class="score-1 {className}-score"></span><span class="score-2 {className}-score"></span><span class="score-3 {className}-score"></span><div>
"""
return html
css = """
.output-html-desc {padding-top: 1rem}
.output-html {padding-top: 1rem; padding-bottom: 1rem;}
.output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);}
.token {padding: .5rem; border-radius: 5px;}
.token {cursor: pointer;}
.tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;}
.tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;}
.token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem}
.note-text {margin-bottom: 3.5rem;}
.scores { position: absolute; bottom: 0.75rem; color: rgb(113, 113, 122); right: 1rem;}
.score-1 { display: none; background-color: #FF8865; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-2 { display: none; background-color: #FFD2C4; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-3 { display: none; background-color: #FFF3F0; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
"""
js = """
function showCrossAttFun(attn_scores, decoder_attn, encoder_attn) {
const scrTokens = document.querySelectorAll('.src-token');
const srcLen = scrTokens.length - 1
const targetTokens = document.querySelectorAll('.tgt-token');
const scores = document.querySelectorAll('.score');
const decoderTokens = document.querySelectorAll('.decoder-token');
const decLen = decoderTokens.length - 1
const decoderScores = document.querySelectorAll('.decoder-score');
const encoderTokens = document.querySelectorAll('.encoder-token');
const encLen = encoderTokens.length - 1
const encoderScores = document.querySelectorAll('.encoder-score');
function onTgtHover(event, idx) {
event.style.backgroundColor = "#C6E6E6";
srcIdx0 = attn_scores[idx]['top_index'][0]
if (srcIdx0 < srcLen) {
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = "#FF8865"
scores[0].textContent = attn_scores[idx]['top_values'][0]
scores[0].style.display = "initial";
}
srcIdx1 = attn_scores[idx]['top_index'][1]
if (srcIdx1 < srcLen) {
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = "#FFD2C4"
scores[1].textContent = attn_scores[idx]['top_values'][1]
scores[1].style.display = "initial";
}
srcIdx2 = attn_scores[idx]['top_index'][2]
if (srcIdx2 < srcLen) {
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = "#FFF3F0"
scores[2].textContent = attn_scores[idx]['top_values'][2]
scores[2].style.display = "initial";
}
}
function outHover(event, idx) {
event.style.backgroundColor = "";
srcIdx0 = attn_scores[idx]['top_index'][0]
srcIdx1 = attn_scores[idx]['top_index'][1]
srcIdx2 = attn_scores[idx]['top_index'][2]
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = ""
scores[0].textContent = ""
scores[0].style.display = "none";
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = ""
scores[1].textContent = ""
scores[1].style.display = "none";
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = ""
scores[2].textContent = ""
scores[2].style.display = "none";
}
function onDecodeHover(event, idx) {
idx0 = decoder_attn[idx]['top_index'][0]
if (idx0 < decLen) {
el0 = decoderTokens[idx0]
el0.style.backgroundColor = "#FF8865"
decoderScores[0].textContent = decoder_attn[idx]['top_values'][0]
decoderScores[0].style.display = "initial";
}
idx1 = decoder_attn[idx]['top_index'][1]
if (idx1 < decLen) {
el1 = decoderTokens[idx1]
el1.style.backgroundColor = "#FFD2C4"
decoderScores[1].textContent = decoder_attn[idx]['top_values'][1]
decoderScores[1].style.display = "initial";
}
idx2 = decoder_attn[idx]['top_index'][2]
if (idx2 < decLen) {
el2 = decoderTokens[idx2]
el2.style.backgroundColor = "#FFF3F0"
decoderScores[2].textContent = decoder_attn[idx]['top_values'][2]
decoderScores[2].style.display = "initial";
}
for (i=idx+1; i < decoderTokens.length; i++) {
decoderTokens[i].style.color = "#ccc9c9";
}
}
function outDecodeHover(event, idx) {
event.style.backgroundColor = "";
idx0 = decoder_attn[idx]['top_index'][0]
el0 = decoderTokens[idx0]
el0.style.backgroundColor = ""
decoderScores[0].textContent = ""
decoderScores[0].style.display = "none";
idx1 = decoder_attn[idx]['top_index'][1]
if (idx1 || idx1 == 0) {
el1 = decoderTokens[idx1]
el1.style.backgroundColor = ""
decoderScores[1].textContent = ""
decoderScores[1].style.display = "none";
}
idx2 = decoder_attn[idx]['top_index'][2]
if (idx2 || idx2 == 0) {
el2 = decoderTokens[idx2]
el2.style.backgroundColor = ""
decoderScores[2].textContent = ""
decoderScores[2].style.display = "none";
}
for (i=idx+1; i < decoderTokens.length; i++) {
decoderTokens[i].style.color = "black";
}
}
function onEncodeHover(event, idx) {
idx0 = encoder_attn[idx]['top_index'][0]
if (idx0 < encLen) {
el0 = encoderTokens[idx0]
el0.style.backgroundColor = "#89C6C6"
encoderScores[0].textContent = encoder_attn[idx]['top_values'][0]
encoderScores[0].style.display = "initial"
encoderScores[0].style.backgroundColor = "#89C6C6"
}
idx1 = encoder_attn[idx]['top_index'][1]
if (idx1 < encLen) {
el1 = encoderTokens[idx1]
el1.style.backgroundColor = "#C6E6E6"
encoderScores[1].textContent = encoder_attn[idx]['top_values'][1]
encoderScores[1].style.display = "initial"
encoderScores[1].style.backgroundColor = "#C6E6E6"
}
idx2 = encoder_attn[idx]['top_index'][2]
if (idx2 < encLen) {
el2 = encoderTokens[idx2]
el2.style.backgroundColor = "#E5F5F5"
encoderScores[2].textContent = encoder_attn[idx]['top_values'][2]
encoderScores[2].style.display = "initial"
encoderScores[2].style.backgroundColor = "#E5F5F5"
}
}
function outEncodeHover(event, idx) {
event.style.backgroundColor = "";
idx0 = encoder_attn[idx]['top_index'][0]
el0 = encoderTokens[idx0]
el0.style.backgroundColor = ""
encoderScores[0].textContent = ""
encoderScores[0].style.display = "none";
idx1 = encoder_attn[idx]['top_index'][1]
if (idx1 || idx1 == 0) {
el1 = encoderTokens[idx1]
el1.style.backgroundColor = ""
encoderScores[1].textContent = ""
encoderScores[1].style.display = "none";
}
idx2 = encoder_attn[idx]['top_index'][2]
if (idx2 || idx2 == 0) {
el2 = encoderTokens[idx2]
el2.style.backgroundColor = ""
encoderScores[2].textContent = ""
encoderScores[2].style.display = "none";
}
}
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onTgtHover(el, idx)
})
});
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outHover(el, idx)
})
});
decoderTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onDecodeHover(el, idx)
})
});
decoderTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outDecodeHover(el, idx)
})
});
encoderTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onEncodeHover(el, idx)
})
});
encoderTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outEncodeHover(el, idx)
})
});
}
"""
# Gradio Interface
with gr.Blocks(css=css) as demo:
gr.Markdown("""
## 🕸️ Visualize Attentions in Translated Text (English to Chinese)
After translating your English input to Chinese, you can check the cross attentions and self-attentions of the translation in the lower section of the page.
""")
with gr.Row():
with gr.Column():
input_box = gr.Textbox(lines=4, label="Input Text (English)")
with gr.Column():
output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)")
# Examples Section
gr.Examples(
examples=[
["They heard the click of the front door and knew that the Dursleys had left the house."],
["Azkaban was a fortress where the most dangerous dark wizards were held, guarded by creatures called Dementors."]
],
inputs=[input_box]
)
translate_button = gr.Button("Translate", variant="primary")
cross_attn = gr.JSON(value=[], visible=False)
decoder_attn = gr.JSON(value=[], visible=False)
encoder_attn = gr.JSON(value=[], visible=False)
gr.Markdown(
"""
## Check Cross Attentions
Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text).
Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
output_html = gr.HTML(label="Cross Attention", elem_classes="output-html")
gr.Markdown(
"""
## Check Self Attentions for Encoder
Hover your mouse over an input (English) word/token to see which word/token it is self-attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
encoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")
gr.Markdown(
"""
## Check Self Attentions for Decoder
Hover your mouse over an output (Chinese) word/token to see which word/token it is self-attending to.
Notice that decoder tokens only attend to tokens on its left as during the generation of each token, it pays attention only to the past not to the future.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
decoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")
translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, cross_attn, decoder_output_html, decoder_attn, encoder_output_html, encoder_attn])
output_box.change(None, [cross_attn, decoder_attn, encoder_attn], None, js=js)
gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ",
elem_classes="note-text")
demo.launch()
|