maomao88's picture
update examples
820edc7
raw
history blame
15.5 kB
import torch
from torch import nn
import gradio as gr
from utils import save_data, get_attn_list, get_top_attns, get_encoder_attn_list
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_name = "Helsinki-NLP/opus-mt-en-zh"
# model_name = "Helsinki-NLP/opus-mt-zh-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
layer_index = model.config.decoder_layers - 1 # last decoder layer index
# Define translation function
def translate_text(input_text):
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
with torch.no_grad():
translated = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, output_attentions=True,
num_beams=1)
outputs = tokenizer.decode(translated.sequences[0][1:][:-1])
# Decode tokens
src_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
src_tokens = [token.lstrip('▁_') for token in src_tokens]
tgt_tokens = tokenizer.convert_ids_to_tokens(translated.sequences[0])[1:]
tgt_tokens = [token.lstrip('▁_') for token in tgt_tokens]
avg_cross_attn_list = get_attn_list(translated.cross_attentions, layer_index)
cross_attn_scores = get_top_attns(avg_cross_attn_list)
avg_decoder_attn_list = get_attn_list(translated.decoder_attentions, layer_index)
decoder_attn_scores = get_top_attns(avg_decoder_attn_list)
avg_encoder_attn_list = get_encoder_attn_list(translated.encoder_attentions, layer_index)
encoder_attn_scores = get_top_attns(avg_encoder_attn_list)
# save_data(outputs, src_tokens, tgt_tokens, attn_scores)
return outputs, render_cross_attn_html(src_tokens, tgt_tokens), cross_attn_scores, render_encoder_decoder_attn_html(tgt_tokens, "Output"), decoder_attn_scores, render_encoder_decoder_attn_html(src_tokens, "Input"), encoder_attn_scores
def render_cross_attn_html(src_tokens, tgt_tokens):
# Build HTML for source and target tokens
src_html = ""
for i, token in enumerate(src_tokens):
src_html += f'<span class="token src-token" data-index="{i}">{token}</span> '
tgt_html = ""
for i, token in enumerate(tgt_tokens):
tgt_html += f'<span class="token tgt-token" data-index="{i}">{token}</span> '
html = f"""
<div class="tgt-token-wrapper-text">Output Tokens</div>
<div class="tgt-token-wrapper">{tgt_html}</div>
<hr class="token-wrapper-seperator">
<div class="src-token-wrapper-text">Input Tokens</div>
<div class="src-token-wrapper">{src_html}</div>
<div class="scores"><span class="score-1 score"></span><span class="score-2 score"></span><span class="score-3 score"></span><div>
"""
return html
def render_encoder_decoder_attn_html(tokens, type):
# Build HTML for source and target tokens
tokens_html = ""
className = "decoder"
if type == "Input":
className = "encoder"
for i, token in enumerate(tokens):
tokens_html += f'<span class="token {className}-token" data-index="{i}">{token}</span> '
html = f"""
<div class="tgt-token-wrapper-text">{type} Tokens</div>
<div class="tgt-token-wrapper">{tokens_html}</div>
<div class="scores"><span class="score-1 {className}-score"></span><span class="score-2 {className}-score"></span><span class="score-3 {className}-score"></span><div>
"""
return html
css = """
.output-html-desc {padding-top: 1rem}
.output-html {padding-top: 1rem; padding-bottom: 1rem;}
.output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);}
.token {padding: .5rem; border-radius: 5px;}
.token {cursor: pointer;}
.tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;}
.tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;}
.token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem}
.note-text {margin-bottom: 3.5rem;}
.scores { position: absolute; bottom: 0.75rem; color: rgb(113, 113, 122); right: 1rem;}
.score-1 { display: none; background-color: #FF8865; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-2 { display: none; background-color: #FFD2C4; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-3 { display: none; background-color: #FFF3F0; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
"""
js = """
function showCrossAttFun(attn_scores, decoder_attn, encoder_attn) {
const scrTokens = document.querySelectorAll('.src-token');
const srcLen = scrTokens.length - 1
const targetTokens = document.querySelectorAll('.tgt-token');
const scores = document.querySelectorAll('.score');
const decoderTokens = document.querySelectorAll('.decoder-token');
const decLen = decoderTokens.length - 1
const decoderScores = document.querySelectorAll('.decoder-score');
const encoderTokens = document.querySelectorAll('.encoder-token');
const encLen = encoderTokens.length - 1
const encoderScores = document.querySelectorAll('.encoder-score');
function onTgtHover(event, idx) {
event.style.backgroundColor = "#C6E6E6";
srcIdx0 = attn_scores[idx]['top_index'][0]
if (srcIdx0 < srcLen) {
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = "#FF8865"
scores[0].textContent = attn_scores[idx]['top_values'][0]
scores[0].style.display = "initial";
}
srcIdx1 = attn_scores[idx]['top_index'][1]
if (srcIdx1 < srcLen) {
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = "#FFD2C4"
scores[1].textContent = attn_scores[idx]['top_values'][1]
scores[1].style.display = "initial";
}
srcIdx2 = attn_scores[idx]['top_index'][2]
if (srcIdx2 < srcLen) {
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = "#FFF3F0"
scores[2].textContent = attn_scores[idx]['top_values'][2]
scores[2].style.display = "initial";
}
}
function outHover(event, idx) {
event.style.backgroundColor = "";
srcIdx0 = attn_scores[idx]['top_index'][0]
srcIdx1 = attn_scores[idx]['top_index'][1]
srcIdx2 = attn_scores[idx]['top_index'][2]
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = ""
scores[0].textContent = ""
scores[0].style.display = "none";
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = ""
scores[1].textContent = ""
scores[1].style.display = "none";
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = ""
scores[2].textContent = ""
scores[2].style.display = "none";
}
function onDecodeHover(event, idx) {
idx0 = decoder_attn[idx]['top_index'][0]
if (idx0 < decLen) {
el0 = decoderTokens[idx0]
el0.style.backgroundColor = "#FF8865"
decoderScores[0].textContent = decoder_attn[idx]['top_values'][0]
decoderScores[0].style.display = "initial";
}
idx1 = decoder_attn[idx]['top_index'][1]
if (idx1 < decLen) {
el1 = decoderTokens[idx1]
el1.style.backgroundColor = "#FFD2C4"
decoderScores[1].textContent = decoder_attn[idx]['top_values'][1]
decoderScores[1].style.display = "initial";
}
idx2 = decoder_attn[idx]['top_index'][2]
if (idx2 < decLen) {
el2 = decoderTokens[idx2]
el2.style.backgroundColor = "#FFF3F0"
decoderScores[2].textContent = decoder_attn[idx]['top_values'][2]
decoderScores[2].style.display = "initial";
}
for (i=idx+1; i < decoderTokens.length; i++) {
decoderTokens[i].style.color = "#ccc9c9";
}
}
function outDecodeHover(event, idx) {
event.style.backgroundColor = "";
idx0 = decoder_attn[idx]['top_index'][0]
el0 = decoderTokens[idx0]
el0.style.backgroundColor = ""
decoderScores[0].textContent = ""
decoderScores[0].style.display = "none";
idx1 = decoder_attn[idx]['top_index'][1]
if (idx1 || idx1 == 0) {
el1 = decoderTokens[idx1]
el1.style.backgroundColor = ""
decoderScores[1].textContent = ""
decoderScores[1].style.display = "none";
}
idx2 = decoder_attn[idx]['top_index'][2]
if (idx2 || idx2 == 0) {
el2 = decoderTokens[idx2]
el2.style.backgroundColor = ""
decoderScores[2].textContent = ""
decoderScores[2].style.display = "none";
}
for (i=idx+1; i < decoderTokens.length; i++) {
decoderTokens[i].style.color = "black";
}
}
function onEncodeHover(event, idx) {
idx0 = encoder_attn[idx]['top_index'][0]
if (idx0 < encLen) {
el0 = encoderTokens[idx0]
el0.style.backgroundColor = "#89C6C6"
encoderScores[0].textContent = encoder_attn[idx]['top_values'][0]
encoderScores[0].style.display = "initial"
encoderScores[0].style.backgroundColor = "#89C6C6"
}
idx1 = encoder_attn[idx]['top_index'][1]
if (idx1 < encLen) {
el1 = encoderTokens[idx1]
el1.style.backgroundColor = "#C6E6E6"
encoderScores[1].textContent = encoder_attn[idx]['top_values'][1]
encoderScores[1].style.display = "initial"
encoderScores[1].style.backgroundColor = "#C6E6E6"
}
idx2 = encoder_attn[idx]['top_index'][2]
if (idx2 < encLen) {
el2 = encoderTokens[idx2]
el2.style.backgroundColor = "#E5F5F5"
encoderScores[2].textContent = encoder_attn[idx]['top_values'][2]
encoderScores[2].style.display = "initial"
encoderScores[2].style.backgroundColor = "#E5F5F5"
}
}
function outEncodeHover(event, idx) {
event.style.backgroundColor = "";
idx0 = encoder_attn[idx]['top_index'][0]
el0 = encoderTokens[idx0]
el0.style.backgroundColor = ""
encoderScores[0].textContent = ""
encoderScores[0].style.display = "none";
idx1 = encoder_attn[idx]['top_index'][1]
if (idx1 || idx1 == 0) {
el1 = encoderTokens[idx1]
el1.style.backgroundColor = ""
encoderScores[1].textContent = ""
encoderScores[1].style.display = "none";
}
idx2 = encoder_attn[idx]['top_index'][2]
if (idx2 || idx2 == 0) {
el2 = encoderTokens[idx2]
el2.style.backgroundColor = ""
encoderScores[2].textContent = ""
encoderScores[2].style.display = "none";
}
}
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onTgtHover(el, idx)
})
});
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outHover(el, idx)
})
});
decoderTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onDecodeHover(el, idx)
})
});
decoderTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outDecodeHover(el, idx)
})
});
encoderTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onEncodeHover(el, idx)
})
});
encoderTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outEncodeHover(el, idx)
})
});
}
"""
# Gradio Interface
with gr.Blocks(css=css) as demo:
gr.Markdown("""
## 🕸️ Visualize Attentions in Translated Text (English to Chinese)
This app aims to help users better understand the behavior behind the attention layers in transformer models by visualizing the cross-attention and self-attention weights in an encoder-decoder model to see the alignment between and within the source and target tokens.
After translating your English input to Chinese, you can check the cross attentions and self-attentions of the translation in the lower section of the page.
""")
with gr.Row():
with gr.Column():
input_box = gr.Textbox(lines=4, label="Input Text (English)")
with gr.Column():
output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)")
# Examples Section
gr.Examples(
examples=[
["A bird can fly and so can a fly"],
["She sat by the river bank, letting the cool breeze and the sound of flowing water calm her thoughts."]
],
inputs=[input_box]
)
translate_button = gr.Button("Translate", variant="primary")
cross_attn = gr.JSON(value=[], visible=False)
decoder_attn = gr.JSON(value=[], visible=False)
encoder_attn = gr.JSON(value=[], visible=False)
gr.Markdown(
"""
## Check Cross Attentions
Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text).
Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
output_html = gr.HTML(label="Cross Attention", elem_classes="output-html")
gr.Markdown(
"""
## Check Self Attentions for Encoder
Hover your mouse over an input (English) word/token to see which word/token it is self-attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
encoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")
gr.Markdown(
"""
## Check Self Attentions for Decoder
Hover your mouse over an output (Chinese) word/token to see which word/token it is self-attending to.
Notice that decoder tokens only attend to tokens on its left as during the generation of each token, it pays attention only to the past not to the future.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
decoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")
translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, cross_attn, decoder_output_html, decoder_attn, encoder_output_html, encoder_attn])
output_box.change(None, [cross_attn, decoder_attn, encoder_attn], None, js=js)
gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ",
elem_classes="note-text")
demo.launch()