"""
return html
def render_encoder_decoder_attn_html(tokens, type):
# Build HTML for source and target tokens
tokens_html = ""
className = "decoder"
if type == "Input":
className = "encoder"
for i, token in enumerate(tokens):
tokens_html += f'
"""
return html
css = """
.output-html-desc {padding-top: 1rem}
.output-html {padding-top: 1rem; padding-bottom: 1rem;}
.output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);}
.token {padding: .5rem; border-radius: 5px;}
.token {cursor: pointer;}
.tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper {line-height: 2.5rem; padding: .5rem;}
.src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;}
.tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;}
.token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem}
.note-text {margin-bottom: 3.5rem;}
.scores { position: absolute; bottom: 0.75rem; color: rgb(113, 113, 122); right: 1rem;}
.score-1 { display: none; background-color: #FF8865; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-2 { display: none; background-color: #FFD2C4; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
.score-3 { display: none; background-color: #FFF3F0; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;}
"""
js = """
function showCrossAttFun(attn_scores, decoder_attn, encoder_attn) {
const scrTokens = document.querySelectorAll('.src-token');
const srcLen = scrTokens.length - 1
const targetTokens = document.querySelectorAll('.tgt-token');
const scores = document.querySelectorAll('.score');
const decoderTokens = document.querySelectorAll('.decoder-token');
const decLen = decoderTokens.length - 1
const decoderScores = document.querySelectorAll('.decoder-score');
const encoderTokens = document.querySelectorAll('.encoder-token');
const encLen = encoderTokens.length - 1
const encoderScores = document.querySelectorAll('.encoder-score');
function onTgtHover(event, idx) {
event.style.backgroundColor = "#C6E6E6";
srcIdx0 = attn_scores[idx]['top_index'][0]
if (srcIdx0 < srcLen) {
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = "#FF8865"
scores[0].textContent = attn_scores[idx]['top_values'][0]
scores[0].style.display = "initial";
}
srcIdx1 = attn_scores[idx]['top_index'][1]
if (srcIdx1 < srcLen) {
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = "#FFD2C4"
scores[1].textContent = attn_scores[idx]['top_values'][1]
scores[1].style.display = "initial";
}
srcIdx2 = attn_scores[idx]['top_index'][2]
if (srcIdx2 < srcLen) {
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = "#FFF3F0"
scores[2].textContent = attn_scores[idx]['top_values'][2]
scores[2].style.display = "initial";
}
}
function outHover(event, idx) {
event.style.backgroundColor = "";
srcIdx0 = attn_scores[idx]['top_index'][0]
srcIdx1 = attn_scores[idx]['top_index'][1]
srcIdx2 = attn_scores[idx]['top_index'][2]
srcEl0 = scrTokens[srcIdx0]
srcEl0.style.backgroundColor = ""
scores[0].textContent = ""
scores[0].style.display = "none";
srcEl1 = scrTokens[srcIdx1]
srcEl1.style.backgroundColor = ""
scores[1].textContent = ""
scores[1].style.display = "none";
srcEl2 = scrTokens[srcIdx2]
srcEl2.style.backgroundColor = ""
scores[2].textContent = ""
scores[2].style.display = "none";
}
function onDecodeHover(event, idx) {
idx0 = decoder_attn[idx]['top_index'][0]
if (idx0 < decLen) {
el0 = decoderTokens[idx0]
el0.style.backgroundColor = "#FF8865"
decoderScores[0].textContent = decoder_attn[idx]['top_values'][0]
decoderScores[0].style.display = "initial";
}
idx1 = decoder_attn[idx]['top_index'][1]
if (idx1 < decLen) {
el1 = decoderTokens[idx1]
el1.style.backgroundColor = "#FFD2C4"
decoderScores[1].textContent = decoder_attn[idx]['top_values'][1]
decoderScores[1].style.display = "initial";
}
idx2 = decoder_attn[idx]['top_index'][2]
if (idx2 < decLen) {
el2 = decoderTokens[idx2]
el2.style.backgroundColor = "#FFF3F0"
decoderScores[2].textContent = decoder_attn[idx]['top_values'][2]
decoderScores[2].style.display = "initial";
}
for (i=idx+1; i < decoderTokens.length; i++) {
decoderTokens[i].style.color = "#ccc9c9";
}
}
function outDecodeHover(event, idx) {
event.style.backgroundColor = "";
idx0 = decoder_attn[idx]['top_index'][0]
el0 = decoderTokens[idx0]
el0.style.backgroundColor = ""
decoderScores[0].textContent = ""
decoderScores[0].style.display = "none";
idx1 = decoder_attn[idx]['top_index'][1]
if (idx1 || idx1 == 0) {
el1 = decoderTokens[idx1]
el1.style.backgroundColor = ""
decoderScores[1].textContent = ""
decoderScores[1].style.display = "none";
}
idx2 = decoder_attn[idx]['top_index'][2]
if (idx2 || idx2 == 0) {
el2 = decoderTokens[idx2]
el2.style.backgroundColor = ""
decoderScores[2].textContent = ""
decoderScores[2].style.display = "none";
}
for (i=idx+1; i < decoderTokens.length; i++) {
decoderTokens[i].style.color = "black";
}
}
function onEncodeHover(event, idx) {
idx0 = encoder_attn[idx]['top_index'][0]
if (idx0 < encLen) {
el0 = encoderTokens[idx0]
el0.style.backgroundColor = "#89C6C6"
encoderScores[0].textContent = encoder_attn[idx]['top_values'][0]
encoderScores[0].style.display = "initial"
encoderScores[0].style.backgroundColor = "#89C6C6"
}
idx1 = encoder_attn[idx]['top_index'][1]
if (idx1 < encLen) {
el1 = encoderTokens[idx1]
el1.style.backgroundColor = "#C6E6E6"
encoderScores[1].textContent = encoder_attn[idx]['top_values'][1]
encoderScores[1].style.display = "initial"
encoderScores[1].style.backgroundColor = "#C6E6E6"
}
idx2 = encoder_attn[idx]['top_index'][2]
if (idx2 < encLen) {
el2 = encoderTokens[idx2]
el2.style.backgroundColor = "#E5F5F5"
encoderScores[2].textContent = encoder_attn[idx]['top_values'][2]
encoderScores[2].style.display = "initial"
encoderScores[2].style.backgroundColor = "#E5F5F5"
}
}
function outEncodeHover(event, idx) {
event.style.backgroundColor = "";
idx0 = encoder_attn[idx]['top_index'][0]
el0 = encoderTokens[idx0]
el0.style.backgroundColor = ""
encoderScores[0].textContent = ""
encoderScores[0].style.display = "none";
idx1 = encoder_attn[idx]['top_index'][1]
if (idx1 || idx1 == 0) {
el1 = encoderTokens[idx1]
el1.style.backgroundColor = ""
encoderScores[1].textContent = ""
encoderScores[1].style.display = "none";
}
idx2 = encoder_attn[idx]['top_index'][2]
if (idx2 || idx2 == 0) {
el2 = encoderTokens[idx2]
el2.style.backgroundColor = ""
encoderScores[2].textContent = ""
encoderScores[2].style.display = "none";
}
}
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onTgtHover(el, idx)
})
});
targetTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outHover(el, idx)
})
});
decoderTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onDecodeHover(el, idx)
})
});
decoderTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outDecodeHover(el, idx)
})
});
encoderTokens.forEach((el, idx) => {
el.addEventListener("mouseover", () => {
onEncodeHover(el, idx)
})
});
encoderTokens.forEach((el, idx) => {
el.addEventListener("mouseout", () => {
outEncodeHover(el, idx)
})
});
}
"""
# Gradio Interface
with gr.Blocks(css=css) as demo:
gr.Markdown("""
## 🕸️ Visualize Attentions in Translated Text (English to Chinese)
After translating your English input to Chinese, you can check the cross attentions and self-attentions of the translation in the lower section of the page.
""")
with gr.Row():
with gr.Column():
input_box = gr.Textbox(lines=4, label="Input Text (English)")
with gr.Column():
output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)")
# Examples Section
gr.Examples(
examples=[
["They heard the click of the front door and knew that the Dursleys had left the house."],
["Azkaban was a fortress where the most dangerous dark wizards were held, guarded by creatures called Dementors."]
],
inputs=[input_box]
)
translate_button = gr.Button("Translate", variant="primary")
cross_attn = gr.JSON(value=[], visible=False)
decoder_attn = gr.JSON(value=[], visible=False)
encoder_attn = gr.JSON(value=[], visible=False)
gr.Markdown(
"""
## Check Cross Attentions
Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text).
Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
output_html = gr.HTML(label="Cross Attention", elem_classes="output-html")
gr.Markdown(
"""
## Check Self Attentions for Encoder
Hover your mouse over an input (English) word/token to see which word/token it is self-attending to.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
encoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")
gr.Markdown(
"""
## Check Self Attentions for Decoder
Hover your mouse over an output (Chinese) word/token to see which word/token it is self-attending to.
Notice that decoder tokens only attend to tokens on its left as during the generation of each token, it pays attention only to the past not to the future.
""",
elem_classes="output-html-desc"
)
with gr.Row(elem_classes="output-html-row"):
decoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html")
translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, cross_attn, decoder_output_html, decoder_attn, encoder_output_html, encoder_attn])
output_box.change(None, [cross_attn, decoder_attn, encoder_attn], None, js=js)
gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ",
elem_classes="note-text")
demo.launch()