import torch from torch import nn import gradio as gr from utils import save_data, get_attn_list, get_top_attns, get_encoder_attn_list from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "Helsinki-NLP/opus-mt-en-zh" # model_name = "Helsinki-NLP/opus-mt-zh-en" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) layer_index = model.config.decoder_layers - 1 # last decoder layer index # Define translation function def translate_text(input_text): inputs = tokenizer(input_text, return_tensors="pt", padding=True) with torch.no_grad(): translated = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, output_attentions=True, num_beams=1) outputs = tokenizer.decode(translated.sequences[0][1:][:-1]) # Decode tokens src_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) src_tokens = [token.lstrip('▁_') for token in src_tokens] tgt_tokens = tokenizer.convert_ids_to_tokens(translated.sequences[0])[1:] tgt_tokens = [token.lstrip('▁_') for token in tgt_tokens] avg_cross_attn_list = get_attn_list(translated.cross_attentions, layer_index) cross_attn_scores = get_top_attns(avg_cross_attn_list) avg_decoder_attn_list = get_attn_list(translated.decoder_attentions, layer_index) decoder_attn_scores = get_top_attns(avg_decoder_attn_list) avg_encoder_attn_list = get_encoder_attn_list(translated.encoder_attentions, layer_index) encoder_attn_scores = get_top_attns(avg_encoder_attn_list) # save_data(outputs, src_tokens, tgt_tokens, attn_scores) return outputs, render_cross_attn_html(src_tokens, tgt_tokens), cross_attn_scores, render_encoder_decoder_attn_html(tgt_tokens, "Output"), decoder_attn_scores, render_encoder_decoder_attn_html(src_tokens, "Input"), encoder_attn_scores def render_cross_attn_html(src_tokens, tgt_tokens): # Build HTML for source and target tokens src_html = "" for i, token in enumerate(src_tokens): src_html += f'{token} ' tgt_html = "" for i, token in enumerate(tgt_tokens): tgt_html += f'{token} ' html = f"""
Output Tokens
{tgt_html}

Input Tokens
{src_html}
""" return html def render_encoder_decoder_attn_html(tokens, type): # Build HTML for source and target tokens tokens_html = "" className = "decoder" if type == "Input": className = "encoder" for i, token in enumerate(tokens): tokens_html += f'{token} ' html = f"""
{type} Tokens
{tokens_html}
""" return html css = """ .output-html-desc {padding-top: 1rem} .output-html {padding-top: 1rem; padding-bottom: 1rem;} .output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);} .token {padding: .5rem; border-radius: 5px;} .token {cursor: pointer;} .tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;} .src-token-wrapper {line-height: 2.5rem; padding: .5rem;} .src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;} .tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;} .token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem} .note-text {margin-bottom: 3.5rem;} .scores { position: absolute; bottom: 0.75rem; color: rgb(113, 113, 122); right: 1rem;} .score-1 { display: none; background-color: #FF8865; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;} .score-2 { display: none; background-color: #FFD2C4; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;} .score-3 { display: none; background-color: #FFF3F0; padding: .5rem; border-radius: var(--block-radius); margin-right: .75rem;} """ js = """ function showCrossAttFun(attn_scores, decoder_attn, encoder_attn) { const scrTokens = document.querySelectorAll('.src-token'); const srcLen = scrTokens.length - 1 const targetTokens = document.querySelectorAll('.tgt-token'); const scores = document.querySelectorAll('.score'); const decoderTokens = document.querySelectorAll('.decoder-token'); const decLen = decoderTokens.length - 1 const decoderScores = document.querySelectorAll('.decoder-score'); const encoderTokens = document.querySelectorAll('.encoder-token'); const encLen = encoderTokens.length - 1 const encoderScores = document.querySelectorAll('.encoder-score'); function onTgtHover(event, idx) { event.style.backgroundColor = "#C6E6E6"; srcIdx0 = attn_scores[idx]['top_index'][0] if (srcIdx0 < srcLen) { srcEl0 = scrTokens[srcIdx0] srcEl0.style.backgroundColor = "#FF8865" scores[0].textContent = attn_scores[idx]['top_values'][0] scores[0].style.display = "initial"; } srcIdx1 = attn_scores[idx]['top_index'][1] if (srcIdx1 < srcLen) { srcEl1 = scrTokens[srcIdx1] srcEl1.style.backgroundColor = "#FFD2C4" scores[1].textContent = attn_scores[idx]['top_values'][1] scores[1].style.display = "initial"; } srcIdx2 = attn_scores[idx]['top_index'][2] if (srcIdx2 < srcLen) { srcEl2 = scrTokens[srcIdx2] srcEl2.style.backgroundColor = "#FFF3F0" scores[2].textContent = attn_scores[idx]['top_values'][2] scores[2].style.display = "initial"; } } function outHover(event, idx) { event.style.backgroundColor = ""; srcIdx0 = attn_scores[idx]['top_index'][0] srcIdx1 = attn_scores[idx]['top_index'][1] srcIdx2 = attn_scores[idx]['top_index'][2] srcEl0 = scrTokens[srcIdx0] srcEl0.style.backgroundColor = "" scores[0].textContent = "" scores[0].style.display = "none"; srcEl1 = scrTokens[srcIdx1] srcEl1.style.backgroundColor = "" scores[1].textContent = "" scores[1].style.display = "none"; srcEl2 = scrTokens[srcIdx2] srcEl2.style.backgroundColor = "" scores[2].textContent = "" scores[2].style.display = "none"; } function onDecodeHover(event, idx) { idx0 = decoder_attn[idx]['top_index'][0] if (idx0 < decLen) { el0 = decoderTokens[idx0] el0.style.backgroundColor = "#FF8865" decoderScores[0].textContent = decoder_attn[idx]['top_values'][0] decoderScores[0].style.display = "initial"; } idx1 = decoder_attn[idx]['top_index'][1] if (idx1 < decLen) { el1 = decoderTokens[idx1] el1.style.backgroundColor = "#FFD2C4" decoderScores[1].textContent = decoder_attn[idx]['top_values'][1] decoderScores[1].style.display = "initial"; } idx2 = decoder_attn[idx]['top_index'][2] if (idx2 < decLen) { el2 = decoderTokens[idx2] el2.style.backgroundColor = "#FFF3F0" decoderScores[2].textContent = decoder_attn[idx]['top_values'][2] decoderScores[2].style.display = "initial"; } for (i=idx+1; i < decoderTokens.length; i++) { decoderTokens[i].style.color = "#ccc9c9"; } } function outDecodeHover(event, idx) { event.style.backgroundColor = ""; idx0 = decoder_attn[idx]['top_index'][0] el0 = decoderTokens[idx0] el0.style.backgroundColor = "" decoderScores[0].textContent = "" decoderScores[0].style.display = "none"; idx1 = decoder_attn[idx]['top_index'][1] if (idx1 || idx1 == 0) { el1 = decoderTokens[idx1] el1.style.backgroundColor = "" decoderScores[1].textContent = "" decoderScores[1].style.display = "none"; } idx2 = decoder_attn[idx]['top_index'][2] if (idx2 || idx2 == 0) { el2 = decoderTokens[idx2] el2.style.backgroundColor = "" decoderScores[2].textContent = "" decoderScores[2].style.display = "none"; } for (i=idx+1; i < decoderTokens.length; i++) { decoderTokens[i].style.color = "black"; } } function onEncodeHover(event, idx) { idx0 = encoder_attn[idx]['top_index'][0] if (idx0 < encLen) { el0 = encoderTokens[idx0] el0.style.backgroundColor = "#89C6C6" encoderScores[0].textContent = encoder_attn[idx]['top_values'][0] encoderScores[0].style.display = "initial" encoderScores[0].style.backgroundColor = "#89C6C6" } idx1 = encoder_attn[idx]['top_index'][1] if (idx1 < encLen) { el1 = encoderTokens[idx1] el1.style.backgroundColor = "#C6E6E6" encoderScores[1].textContent = encoder_attn[idx]['top_values'][1] encoderScores[1].style.display = "initial" encoderScores[1].style.backgroundColor = "#C6E6E6" } idx2 = encoder_attn[idx]['top_index'][2] if (idx2 < encLen) { el2 = encoderTokens[idx2] el2.style.backgroundColor = "#E5F5F5" encoderScores[2].textContent = encoder_attn[idx]['top_values'][2] encoderScores[2].style.display = "initial" encoderScores[2].style.backgroundColor = "#E5F5F5" } } function outEncodeHover(event, idx) { event.style.backgroundColor = ""; idx0 = encoder_attn[idx]['top_index'][0] el0 = encoderTokens[idx0] el0.style.backgroundColor = "" encoderScores[0].textContent = "" encoderScores[0].style.display = "none"; idx1 = encoder_attn[idx]['top_index'][1] if (idx1 || idx1 == 0) { el1 = encoderTokens[idx1] el1.style.backgroundColor = "" encoderScores[1].textContent = "" encoderScores[1].style.display = "none"; } idx2 = encoder_attn[idx]['top_index'][2] if (idx2 || idx2 == 0) { el2 = encoderTokens[idx2] el2.style.backgroundColor = "" encoderScores[2].textContent = "" encoderScores[2].style.display = "none"; } } targetTokens.forEach((el, idx) => { el.addEventListener("mouseover", () => { onTgtHover(el, idx) }) }); targetTokens.forEach((el, idx) => { el.addEventListener("mouseout", () => { outHover(el, idx) }) }); decoderTokens.forEach((el, idx) => { el.addEventListener("mouseover", () => { onDecodeHover(el, idx) }) }); decoderTokens.forEach((el, idx) => { el.addEventListener("mouseout", () => { outDecodeHover(el, idx) }) }); encoderTokens.forEach((el, idx) => { el.addEventListener("mouseover", () => { onEncodeHover(el, idx) }) }); encoderTokens.forEach((el, idx) => { el.addEventListener("mouseout", () => { outEncodeHover(el, idx) }) }); } """ # Gradio Interface with gr.Blocks(css=css) as demo: gr.Markdown(""" ## 🕸️ Visualize Attentions in Translated Text (English to Chinese) After translating your English input to Chinese, you can check the cross attentions and self-attentions of the translation in the lower section of the page. """) with gr.Row(): with gr.Column(): input_box = gr.Textbox(lines=4, label="Input Text (English)") with gr.Column(): output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)") # Examples Section gr.Examples( examples=[ ["They heard the click of the front door and knew that the Dursleys had left the house."], ["Azkaban was a fortress where the most dangerous dark wizards were held, guarded by creatures called Dementors."] ], inputs=[input_box] ) translate_button = gr.Button("Translate", variant="primary") cross_attn = gr.JSON(value=[], visible=False) decoder_attn = gr.JSON(value=[], visible=False) encoder_attn = gr.JSON(value=[], visible=False) gr.Markdown( """ ## Check Cross Attentions Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text). Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to. """, elem_classes="output-html-desc" ) with gr.Row(elem_classes="output-html-row"): output_html = gr.HTML(label="Cross Attention", elem_classes="output-html") gr.Markdown( """ ## Check Self Attentions for Encoder Hover your mouse over an input (English) word/token to see which word/token it is self-attending to. """, elem_classes="output-html-desc" ) with gr.Row(elem_classes="output-html-row"): encoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html") gr.Markdown( """ ## Check Self Attentions for Decoder Hover your mouse over an output (Chinese) word/token to see which word/token it is self-attending to. Notice that decoder tokens only attend to tokens on its left as during the generation of each token, it pays attention only to the past not to the future. """, elem_classes="output-html-desc" ) with gr.Row(elem_classes="output-html-row"): decoder_output_html = gr.HTML(label="Decoder Attention)", elem_classes="output-html") translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, cross_attn, decoder_output_html, decoder_attn, encoder_output_html, encoder_attn]) output_box.change(None, [cross_attn, decoder_attn, encoder_attn], None, js=js) gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ", elem_classes="note-text") demo.launch()