import torch from torch import nn import gradio as gr import heapq import pickle from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "Helsinki-NLP/opus-mt-en-zh" # model_name = "Helsinki-NLP/opus-mt-zh-en" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) layer_index = model.config.decoder_layers - 1 # last decoder layer index def save_data(outputs, src_tokens, tgt_tokens, attn_scores): data = {'outputs': outputs, 'src_tokens': src_tokens, 'tgt_tokens': tgt_tokens, 'attn_scores': attn_scores} # Save to file with open("data.pkl", "wb") as f: pickle.dump(data, f) def get_attn_list(cross_attentions): avg_attn_list = [] for i in range(len(cross_attentions)): token_index = i # pick a token index from the output (1 to 18) attn_tensor = cross_attentions[token_index][layer_index] # shape: [1, 8, 1, 24] avg_attn_list.append(attn_tensor.squeeze(0).squeeze(1).mean(0)) # shape: [24], mean across heads return avg_attn_list def get_top_attns(avg_attn_list): avg_attn_top = [] for i in range(len(avg_attn_list)): # Get top 3 (index, value) pairs top_3 = heapq.nlargest(3, enumerate(avg_attn_list[i]), key=lambda x: x[1]) # get the indices and values of the source tokens top_values = [val for idx, val in top_3] top_index = [idx for idx, val in top_3] avg_attn_top.append({ "top_values": top_values, "top_index": top_index }) return avg_attn_top # Define translation function def translate_text(input_text): inputs = tokenizer(input_text, return_tensors="pt", padding=True) with torch.no_grad(): translated = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, output_attentions=True, num_beams=1) outputs = tokenizer.decode(translated.sequences[0][1:][:-1]) # Decode tokens src_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) src_tokens = [token.lstrip('▁_') for token in src_tokens] tgt_tokens = tokenizer.convert_ids_to_tokens(translated.sequences[0])[1:] tgt_tokens = [token.lstrip('▁_') for token in tgt_tokens] avg_attn_list = get_attn_list(translated.cross_attentions) attn_scores = get_top_attns(avg_attn_list) # save_data(outputs, src_tokens, tgt_tokens, attn_scores) return outputs, render_attention_html(src_tokens, tgt_tokens), attn_scores def render_attention_html(src_tokens, tgt_tokens): # Build HTML for source and target tokens src_html = "" for i, token in enumerate(src_tokens): src_html += f'{token} ' tgt_html = "" for i, token in enumerate(tgt_tokens): tgt_html += f'{token} ' html = f'
Output Tokens
{tgt_html}

Input Tokens
{src_html}
' return html css = """ .output-html-desc {padding-top: 1rem} .output-html {padding-top: 1rem; padding-bottom: 1rem;} .output-html-row {margin-bottom: .5rem; border: var(--block-border-width) solid var(--block-border-color); border-radius: var(--block-radius);} .token {padding: .5rem; border-radius: 5px;} .tgt-token {cursor: pointer;} .tgt-token-wrapper {line-height: 2.5rem; padding: .5rem;} .src-token-wrapper {line-height: 2.5rem; padding: .5rem;} .src-token-wrapper-text {position: absolute; bottom: .75rem; color: #71717a;} .tgt-token-wrapper-text {position: absolute; top: .75rem; color: #71717a;} .token-wrapper-seperator {margin-top: 1rem; margin-bottom: 1rem} .note-text {margin-bottom: 3.5rem;} """ js = """ function showCrossAttFun(attn_scores) { const scrTokens = document.querySelectorAll('.src-token'); const srcLen = scrTokens.length - 1 const targetTokens = document.querySelectorAll('.tgt-token'); function onTgtHover(event, idx) { event.style.backgroundColor = "#C6E6E6"; srcIdx0 = attn_scores[idx]['top_index'][0] if (srcIdx0 < srcLen) { srcEl0 = scrTokens[srcIdx0] srcEl0.style.backgroundColor = "#FF8865" } srcIdx1 = attn_scores[idx]['top_index'][1] if (srcIdx1 < srcLen) { srcEl1 = scrTokens[srcIdx1] srcEl1.style.backgroundColor = "#FFD2C4" } srcIdx2 = attn_scores[idx]['top_index'][2] if (srcIdx2 < srcLen) { srcEl2 = scrTokens[srcIdx2] srcEl2.style.backgroundColor = "#FFF3F0" } } function outHover(event, idx) { event.style.backgroundColor = ""; srcIdx0 = attn_scores[idx]['top_index'][0] srcIdx1 = attn_scores[idx]['top_index'][1] srcIdx2 = attn_scores[idx]['top_index'][2] srcEl0 = scrTokens[srcIdx0] srcEl0.style.backgroundColor = "" srcEl1 = scrTokens[srcIdx1] srcEl1.style.backgroundColor = "" srcEl2 = scrTokens[srcIdx2] srcEl2.style.backgroundColor = "" } targetTokens.forEach((el, idx) => { el.addEventListener("mouseover", () => { onTgtHover(el, idx) }) }); targetTokens.forEach((el, idx) => { el.addEventListener("mouseout", () => { outHover(el, idx) }) }); } """ # Gradio Interface with gr.Blocks(css=css) as demo: gr.Markdown(""" ## 🕸️ Visualize Cross Attention between Translated Text (English to Chinese) Cross attention is a key component in transformers, where a sequence (English Text) can attend to another sequence’s information (Chinese Text). You can check the cross attention of the translated text in the lower section of the page. """) with gr.Row(): with gr.Column(): input_box = gr.Textbox(lines=4, label="Input Text (English)") with gr.Column(): output_box = gr.Textbox(lines=4, label="Translated Text (Chinese)") # Examples Section gr.Examples( examples=[ ["They heard the click of the front door and knew that the Dursleys had left the house."], ["Azkaban was a fortress where the most dangerous dark wizards were held, guarded by creatures called Dementors."] ], inputs=[input_box] ) translate_button = gr.Button("Translate", variant="primary") attn = gr.JSON(value=[], visible=False) gr.Markdown( """ ## Check Cross Attentions Hover your mouse over an output (Chinese) word/token to see which input (English) word/token it is attending to. """, elem_classes="output-html-desc" ) with gr.Row(elem_classes="output-html-row"): output_html = gr.HTML(label="Translated Text (HTML)", elem_classes="output-html") translate_button.click(fn=translate_text, inputs=input_box, outputs=[output_box, output_html, attn]) output_box.change(None, attn, None, js=js) gr.Markdown("**Note:** I'm using a transformer model of encoder-decoder architecture (`Helsinki-NLP/opus-mt-en-zh`) in order to obtain cross attention from the decoder layers. ", elem_classes="note-text") demo.launch()