Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from io import BytesIO
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
import uvicorn
|
6 |
+
from fastapi import FastAPI, File, UploadFile
|
7 |
+
from PIL import Image
|
8 |
+
from pydantic import BaseModel
|
9 |
+
import tensorflow as tf
|
10 |
+
|
11 |
+
# Carga el modelo SavedModel (ajusta la ruta si es necesario)
|
12 |
+
model = tf.saved_model.load("./efficientnet_alzheimer")
|
13 |
+
|
14 |
+
app = FastAPI(title="API de clasificaci贸n de Alzheimer")
|
15 |
+
|
16 |
+
# Define la funci贸n de preprocesamiento de im谩genes (la misma que en inference.py)
|
17 |
+
def preprocess_image(image):
|
18 |
+
image = image.resize((200, 200))
|
19 |
+
image = np.array(image) / 255.0
|
20 |
+
image = np.expand_dims(image, axis=0)
|
21 |
+
return image
|
22 |
+
|
23 |
+
# Define el formato de la respuesta de la API
|
24 |
+
class Prediction(BaseModel):
|
25 |
+
prediction: str
|
26 |
+
confidence: float
|
27 |
+
|
28 |
+
# Endpoint para la predicci贸n
|
29 |
+
@app.post("/predict", response_model=Prediction)
|
30 |
+
async def predict_image(image: UploadFile = File(...)):
|
31 |
+
# Lee la imagen
|
32 |
+
contents = await image.read()
|
33 |
+
image = Image.open(BytesIO(contents))
|
34 |
+
|
35 |
+
# Preprocesa la imagen
|
36 |
+
processed_image = preprocess_image(image)
|
37 |
+
|
38 |
+
# Realiza la predicci贸n
|
39 |
+
predictions = model(processed_image)
|
40 |
+
|
41 |
+
# Obt茅n la clase predicha y la probabilidad
|
42 |
+
predicted_class = np.argmax(predictions)
|
43 |
+
confidence = np.max(predictions)
|
44 |
+
|
45 |
+
# Mapea la clase num茅rica al nombre de la clase (igual que en inference.py)
|
46 |
+
class_names = {
|
47 |
+
0: "VeryMildDemented",
|
48 |
+
1: "NonDemented",
|
49 |
+
2: "ModerateDemented",
|
50 |
+
3: "MildDemented"
|
51 |
+
}
|
52 |
+
predicted_class_name = class_names.get(predicted_class, "Clase desconocida")
|
53 |
+
|
54 |
+
# Devuelve la predicci贸n y la confianza
|
55 |
+
return {"prediction": predicted_class_name, "confidence": confidence.item()}
|
56 |
+
|
57 |
+
# Punto de entrada para ejecutar la aplicaci贸n con Uvicorn
|
58 |
+
if __name__ == "__main__":
|
59 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))
|