Commit
·
30918aa
1
Parent(s):
6c8936b
implement script and add languages from Spain
Browse files- datasets_cache.pkl +3 -0
- hub_datasets_by_language.ipynb → explore.ipynb +0 -0
- hub_datasets_by_language.py +368 -0
- plots/bar_plot_horizontal.png +0 -0
- plots/bar_plot_vertical.png +0 -0
- plots/pie_chart.png +0 -0
- plots/stack_area.png +0 -0
- plots/stack_area_en_es.png +0 -0
- plots/stack_area_es.png +0 -0
- plots/stack_area_es_ca_gl_eu.png +0 -0
- plots/time_series.png +0 -0
datasets_cache.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a139fa06dfe21c909136c004dc91e0dc0a92e81ffb7ca68fc6c1353d8717851c
|
| 3 |
+
size 33831411
|
hub_datasets_by_language.ipynb → explore.ipynb
RENAMED
|
File without changes
|
hub_datasets_by_language.py
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
from collections import Counter
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from huggingface_hub import HfApi
|
| 10 |
+
|
| 11 |
+
# Define colors for each language
|
| 12 |
+
LANGUAGE_COLORS = {
|
| 13 |
+
"english": "orange",
|
| 14 |
+
"spanish": "blue",
|
| 15 |
+
"catalan": "red",
|
| 16 |
+
"galician": "green",
|
| 17 |
+
"basque": "purple",
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
GRID = False
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def fetch_datasets(cache_file="datasets_cache.pkl"):
|
| 24 |
+
"""Fetch and filter datasets from HuggingFace Hub with caching"""
|
| 25 |
+
# Check if cached data exists and is less than 24 hours old
|
| 26 |
+
if os.path.exists(cache_file):
|
| 27 |
+
cache_age = datetime.now().timestamp() - os.path.getmtime(cache_file)
|
| 28 |
+
if cache_age < 24 * 3600: # 24 hours in seconds
|
| 29 |
+
print("Loading datasets from cache...")
|
| 30 |
+
with open(cache_file, "rb") as f:
|
| 31 |
+
return pickle.load(f)
|
| 32 |
+
else:
|
| 33 |
+
print("Cache is older than 24 hours, fetching fresh data...")
|
| 34 |
+
else:
|
| 35 |
+
print("No cache found, fetching datasets from Hugging Face Hub...")
|
| 36 |
+
|
| 37 |
+
hf_api = HfApi()
|
| 38 |
+
all_datasets = list(hf_api.list_datasets(full=True))
|
| 39 |
+
|
| 40 |
+
# Filter datasets by language
|
| 41 |
+
english_filter = filter(
|
| 42 |
+
lambda d: "language:en" in d.tags
|
| 43 |
+
and not any(
|
| 44 |
+
tag.startswith("language:") and tag != "language:en" for tag in d.tags
|
| 45 |
+
),
|
| 46 |
+
all_datasets,
|
| 47 |
+
)
|
| 48 |
+
spanish_filter = filter(
|
| 49 |
+
lambda d: "language:es" in d.tags
|
| 50 |
+
and not any(
|
| 51 |
+
tag.startswith("language:") and tag != "language:es" for tag in d.tags
|
| 52 |
+
),
|
| 53 |
+
all_datasets,
|
| 54 |
+
)
|
| 55 |
+
catalan_filter = filter(
|
| 56 |
+
lambda d: "language:ca" in d.tags
|
| 57 |
+
and not any(
|
| 58 |
+
tag.startswith("language:") and tag != "language:ca" for tag in d.tags
|
| 59 |
+
),
|
| 60 |
+
all_datasets,
|
| 61 |
+
)
|
| 62 |
+
galician_filter = filter(
|
| 63 |
+
lambda d: "language:gl" in d.tags
|
| 64 |
+
and not any(
|
| 65 |
+
tag.startswith("language:") and tag != "language:gl" for tag in d.tags
|
| 66 |
+
),
|
| 67 |
+
all_datasets,
|
| 68 |
+
)
|
| 69 |
+
basque_filter = filter(
|
| 70 |
+
lambda d: "language:eu" in d.tags
|
| 71 |
+
and not any(
|
| 72 |
+
tag.startswith("language:") and tag != "language:eu" for tag in d.tags
|
| 73 |
+
),
|
| 74 |
+
all_datasets,
|
| 75 |
+
)
|
| 76 |
+
filtered_datasets = {
|
| 77 |
+
"english": list(english_filter),
|
| 78 |
+
"spanish": list(spanish_filter),
|
| 79 |
+
"catalan": list(catalan_filter),
|
| 80 |
+
"galician": list(galician_filter),
|
| 81 |
+
"basque": list(basque_filter),
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
# Cache the filtered datasets
|
| 85 |
+
print("Saving datasets to cache...")
|
| 86 |
+
with open(cache_file, "wb") as f:
|
| 87 |
+
pickle.dump(filtered_datasets, f)
|
| 88 |
+
|
| 89 |
+
return filtered_datasets
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def create_bar_plots(datasets, output_dir):
|
| 93 |
+
"""Create horizontal and vertical bar plots"""
|
| 94 |
+
# Extract creation dates and counts
|
| 95 |
+
years = sorted(
|
| 96 |
+
set(
|
| 97 |
+
date.year
|
| 98 |
+
for date in [
|
| 99 |
+
d.created_at.date() for d in datasets["english"] + datasets["spanish"]
|
| 100 |
+
]
|
| 101 |
+
)
|
| 102 |
+
)
|
| 103 |
+
english_counts = Counter(
|
| 104 |
+
date.year for date in [d.created_at.date() for d in datasets["english"]]
|
| 105 |
+
)
|
| 106 |
+
spanish_counts = Counter(
|
| 107 |
+
date.year for date in [d.created_at.date() for d in datasets["spanish"]]
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Horizontal bar plot
|
| 111 |
+
plt.figure(figsize=(8, 5))
|
| 112 |
+
bar_width = 0.4
|
| 113 |
+
years_index = np.arange(len(years))
|
| 114 |
+
|
| 115 |
+
plt.bar(
|
| 116 |
+
years_index - bar_width / 2,
|
| 117 |
+
[english_counts[year] for year in years],
|
| 118 |
+
width=bar_width,
|
| 119 |
+
label="English",
|
| 120 |
+
color=LANGUAGE_COLORS["english"],
|
| 121 |
+
)
|
| 122 |
+
plt.bar(
|
| 123 |
+
years_index + bar_width / 2,
|
| 124 |
+
[spanish_counts[year] for year in years],
|
| 125 |
+
width=bar_width,
|
| 126 |
+
label="Spanish",
|
| 127 |
+
color=LANGUAGE_COLORS["spanish"],
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
plt.xlabel("Year", fontsize=10)
|
| 131 |
+
plt.ylabel("Number of Datasets", fontsize=10)
|
| 132 |
+
plt.xticks(years_index, years, fontsize=10)
|
| 133 |
+
plt.legend()
|
| 134 |
+
plt.grid(GRID)
|
| 135 |
+
plt.tight_layout()
|
| 136 |
+
plt.savefig(f"{output_dir}/bar_plot_horizontal.png")
|
| 137 |
+
plt.close()
|
| 138 |
+
|
| 139 |
+
# Vertical bar plot
|
| 140 |
+
plt.figure(figsize=(8, 5))
|
| 141 |
+
plt.bar(
|
| 142 |
+
years,
|
| 143 |
+
[english_counts[year] for year in years],
|
| 144 |
+
width=0.4,
|
| 145 |
+
label="English",
|
| 146 |
+
color=LANGUAGE_COLORS["english"],
|
| 147 |
+
)
|
| 148 |
+
plt.bar(
|
| 149 |
+
years,
|
| 150 |
+
[spanish_counts[year] for year in years],
|
| 151 |
+
width=0.4,
|
| 152 |
+
label="Spanish",
|
| 153 |
+
color=LANGUAGE_COLORS["spanish"],
|
| 154 |
+
bottom=[english_counts[year] for year in years],
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
plt.xlabel("Year", fontsize=10)
|
| 158 |
+
plt.ylabel("Number of Datasets", fontsize=10)
|
| 159 |
+
plt.xticks(years, fontsize=10)
|
| 160 |
+
plt.legend()
|
| 161 |
+
plt.tight_layout()
|
| 162 |
+
plt.grid(GRID)
|
| 163 |
+
plt.savefig(f"{output_dir}/bar_plot_vertical.png")
|
| 164 |
+
plt.close()
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def create_pie_chart(datasets, output_dir):
|
| 168 |
+
"""Create pie chart showing distribution of datasets by language"""
|
| 169 |
+
# Calculate counts
|
| 170 |
+
counts = {
|
| 171 |
+
lang.capitalize(): len(datasets[lang])
|
| 172 |
+
for lang in ["english", "spanish", "catalan", "galician", "basque"]
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
plt.figure(figsize=(8, 8))
|
| 176 |
+
plt.pie(
|
| 177 |
+
counts.values(),
|
| 178 |
+
labels=counts.keys(),
|
| 179 |
+
autopct="%1.1f%%",
|
| 180 |
+
startangle=180,
|
| 181 |
+
colors=[
|
| 182 |
+
LANGUAGE_COLORS[lang]
|
| 183 |
+
for lang in ["english", "spanish", "catalan", "galician", "basque"]
|
| 184 |
+
],
|
| 185 |
+
)
|
| 186 |
+
plt.axis("equal")
|
| 187 |
+
plt.savefig(f"{output_dir}/pie_chart.png")
|
| 188 |
+
plt.close()
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def create_time_series(datasets, output_dir):
|
| 192 |
+
"""Create time series plots"""
|
| 193 |
+
# Prepare data
|
| 194 |
+
creation_dates_english = [d.created_at.date() for d in datasets["english"]]
|
| 195 |
+
creation_dates_spanish = [d.created_at.date() for d in datasets["spanish"]]
|
| 196 |
+
|
| 197 |
+
df_english = pd.DataFrame(creation_dates_english, columns=["Date"])
|
| 198 |
+
df_spanish = pd.DataFrame(creation_dates_spanish, columns=["Date"])
|
| 199 |
+
|
| 200 |
+
df_english["Count"] = 1
|
| 201 |
+
df_spanish["Count"] = 1
|
| 202 |
+
|
| 203 |
+
df_english["Date"] = pd.to_datetime(df_english["Date"])
|
| 204 |
+
df_spanish["Date"] = pd.to_datetime(df_spanish["Date"])
|
| 205 |
+
|
| 206 |
+
# Cumulative plots
|
| 207 |
+
df_english_cum = (
|
| 208 |
+
df_english.groupby(pd.Grouper(key="Date", freq="MS")).sum().cumsum()
|
| 209 |
+
)
|
| 210 |
+
df_spanish_cum = (
|
| 211 |
+
df_spanish.groupby(pd.Grouper(key="Date", freq="MS")).sum().cumsum()
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
plt.figure(figsize=(10, 6))
|
| 215 |
+
plt.plot(
|
| 216 |
+
df_english_cum.index,
|
| 217 |
+
df_english_cum["Count"],
|
| 218 |
+
label="English",
|
| 219 |
+
color=LANGUAGE_COLORS["english"],
|
| 220 |
+
)
|
| 221 |
+
plt.plot(
|
| 222 |
+
df_spanish_cum.index,
|
| 223 |
+
df_spanish_cum["Count"],
|
| 224 |
+
label="Spanish",
|
| 225 |
+
color=LANGUAGE_COLORS["spanish"],
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
plt.xlabel("Date", fontsize=10)
|
| 229 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
| 230 |
+
plt.xticks(rotation=45, fontsize=10)
|
| 231 |
+
plt.legend(loc="upper left")
|
| 232 |
+
plt.tight_layout()
|
| 233 |
+
plt.grid(GRID)
|
| 234 |
+
plt.savefig(f"{output_dir}/time_series.png")
|
| 235 |
+
plt.close()
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def create_stack_area_plots(datasets, output_dir):
|
| 239 |
+
"""Create stacked area plots"""
|
| 240 |
+
# Prepare data for all languages
|
| 241 |
+
all_dates = []
|
| 242 |
+
languages = ["english", "spanish", "catalan", "galician", "basque"]
|
| 243 |
+
for lang in languages:
|
| 244 |
+
all_dates.extend([d.created_at.date() for d in datasets[lang]])
|
| 245 |
+
|
| 246 |
+
# Create a common date range for all languages
|
| 247 |
+
min_date = min(all_dates)
|
| 248 |
+
max_date = max(all_dates)
|
| 249 |
+
date_range = pd.date_range(start=min_date, end=max_date, freq="MS")
|
| 250 |
+
|
| 251 |
+
# Create separate DataFrames for each language
|
| 252 |
+
dfs = {}
|
| 253 |
+
for lang in languages:
|
| 254 |
+
dates = [d.created_at.date() for d in datasets[lang]]
|
| 255 |
+
df = pd.DataFrame({"Date": dates})
|
| 256 |
+
df["Count"] = 1
|
| 257 |
+
df["Date"] = pd.to_datetime(df["Date"])
|
| 258 |
+
# Reindex to common date range and fill missing values with 0
|
| 259 |
+
df_grouped = df.groupby(pd.Grouper(key="Date", freq="MS")).sum()
|
| 260 |
+
df_grouped = df_grouped.reindex(date_range, fill_value=0)
|
| 261 |
+
dfs[lang] = df_grouped.cumsum()
|
| 262 |
+
|
| 263 |
+
# Plot stacked area for all languages
|
| 264 |
+
plt.figure(figsize=(10, 6))
|
| 265 |
+
plt.stackplot(
|
| 266 |
+
date_range,
|
| 267 |
+
[dfs[lang]["Count"].values for lang in languages],
|
| 268 |
+
labels=[lang.capitalize() for lang in languages],
|
| 269 |
+
colors=[LANGUAGE_COLORS[lang] for lang in languages],
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
plt.xlabel("Date", fontsize=10)
|
| 273 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
| 274 |
+
plt.xticks(rotation=45, fontsize=10)
|
| 275 |
+
plt.legend(loc="upper left")
|
| 276 |
+
plt.tight_layout()
|
| 277 |
+
plt.grid(GRID)
|
| 278 |
+
plt.savefig(f"{output_dir}/stack_area.png")
|
| 279 |
+
plt.close()
|
| 280 |
+
|
| 281 |
+
# Plot stacked area for all except English
|
| 282 |
+
plt.figure(figsize=(10, 6))
|
| 283 |
+
plt.stackplot(
|
| 284 |
+
date_range,
|
| 285 |
+
[
|
| 286 |
+
dfs[lang]["Count"].values
|
| 287 |
+
for lang in ["spanish", "catalan", "galician", "basque"]
|
| 288 |
+
],
|
| 289 |
+
labels=["Spanish", "Catalan", "Galician", "Basque"],
|
| 290 |
+
colors=[
|
| 291 |
+
LANGUAGE_COLORS[lang]
|
| 292 |
+
for lang in ["spanish", "catalan", "galician", "basque"]
|
| 293 |
+
],
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
plt.xlabel("Date", fontsize=10)
|
| 297 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
| 298 |
+
plt.xticks(rotation=45, fontsize=10)
|
| 299 |
+
plt.legend(loc="upper left")
|
| 300 |
+
plt.tight_layout()
|
| 301 |
+
plt.grid(GRID)
|
| 302 |
+
plt.savefig(f"{output_dir}/stack_area_es_ca_gl_eu.png")
|
| 303 |
+
plt.close()
|
| 304 |
+
|
| 305 |
+
# Plot stacked area for English and Spanish
|
| 306 |
+
plt.figure(figsize=(10, 6))
|
| 307 |
+
plt.stackplot(
|
| 308 |
+
date_range,
|
| 309 |
+
[dfs[lang]["Count"].values for lang in ["english", "spanish"]],
|
| 310 |
+
labels=["English", "Spanish"],
|
| 311 |
+
colors=[LANGUAGE_COLORS[lang] for lang in ["english", "spanish"]],
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
plt.xlabel("Date", fontsize=10)
|
| 315 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
| 316 |
+
plt.xticks(rotation=45, fontsize=10)
|
| 317 |
+
plt.legend(loc="upper left")
|
| 318 |
+
plt.tight_layout()
|
| 319 |
+
plt.grid(GRID)
|
| 320 |
+
plt.savefig(f"{output_dir}/stack_area_en_es.png")
|
| 321 |
+
plt.close()
|
| 322 |
+
|
| 323 |
+
# Plot stacked area for Spanish only
|
| 324 |
+
plt.figure(figsize=(10, 6))
|
| 325 |
+
plt.stackplot(
|
| 326 |
+
date_range,
|
| 327 |
+
[dfs["spanish"]["Count"].values],
|
| 328 |
+
labels=["Spanish"],
|
| 329 |
+
colors=[LANGUAGE_COLORS["spanish"]],
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
plt.xlabel("Date", fontsize=10)
|
| 333 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
| 334 |
+
plt.xticks(rotation=45, fontsize=10)
|
| 335 |
+
plt.legend(loc="upper left")
|
| 336 |
+
plt.tight_layout()
|
| 337 |
+
plt.grid(GRID)
|
| 338 |
+
plt.savefig(f"{output_dir}/stack_area_es.png")
|
| 339 |
+
plt.close()
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def main():
|
| 343 |
+
# Create output directory if it doesn't exist
|
| 344 |
+
output_dir = "plots"
|
| 345 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 346 |
+
|
| 347 |
+
# Fetch datasets
|
| 348 |
+
print("Fetching datasets from Hugging Face Hub...")
|
| 349 |
+
datasets = fetch_datasets()
|
| 350 |
+
|
| 351 |
+
# Create visualizations
|
| 352 |
+
print("Creating bar plots...")
|
| 353 |
+
create_bar_plots(datasets, output_dir)
|
| 354 |
+
|
| 355 |
+
print("Creating pie chart...")
|
| 356 |
+
create_pie_chart(datasets, output_dir)
|
| 357 |
+
|
| 358 |
+
print("Creating time series plots...")
|
| 359 |
+
create_time_series(datasets, output_dir)
|
| 360 |
+
|
| 361 |
+
print("Creating stack area plots...")
|
| 362 |
+
create_stack_area_plots(datasets, output_dir)
|
| 363 |
+
|
| 364 |
+
print(f"All visualizations have been saved to the '{output_dir}' directory")
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
if __name__ == "__main__":
|
| 368 |
+
main()
|
plots/bar_plot_horizontal.png
CHANGED
|
|
plots/bar_plot_vertical.png
CHANGED
|
|
plots/pie_chart.png
ADDED
|
plots/stack_area.png
CHANGED
|
|
plots/stack_area_en_es.png
ADDED
|
plots/stack_area_es.png
CHANGED
|
|
plots/stack_area_es_ca_gl_eu.png
ADDED
|
plots/time_series.png
CHANGED
|
|