File size: 18,670 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
08ae48a
acfd37c
 
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
acfd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
d59f015
31243f4
 
 
 
 
 
 
 
4021bf3
acfd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90251f
31243f4
 
 
 
acfd37c
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
acfd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae98eb
acfd37c
 
 
 
 
 
 
b175db9
acfd37c
b175db9
acfd37c
 
 
 
 
 
 
 
 
 
 
 
e80aab9
 
31243f4
acfd37c
 
 
0ee0419
e514fd7
 
 
acfd37c
e514fd7
e80aab9
 
acfd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b175db9
e80aab9
31243f4
e80aab9
acfd37c
 
 
 
 
 
9088b99
7d65c66
 
e80aab9
acfd37c
 
 
 
 
 
 
 
 
 
31243f4
 
 
e80aab9
 
acfd37c
 
 
 
 
e80aab9
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import agents
from PIL import Image
from io import BytesIO
import whisper

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Load Agent ---
# 1. Instantiate Agent ( modify this part to create your agent)

agent = None

def select_agent(provider_name:str, model_name: str):
    """
    Selects the agent based on the provided name.
    :param agent_name: Name of the agent to select.
    :return: The selected agent instance.
    """
    global agent
    try:
        agent = agents.get_agent(model_name=model_name, model_type=provider_name)
        if agent is None:
            print(f"Agent not found for provider: {provider_name} and model: {model_name}")
            agent = BasicAgent()
    except Exception as e:
        print(f"Error selecting agent: {e}")
        agent = BasicAgent()
    # Update ui to indicate the selected agent
    print(f"Agent selected: {agent.model}")
    agent_info_text.value = get_agent_info()
    return agent


def get_agent_info() -> str:
    global agent
    if (agent is None):
        return "No agent selected."
    try:
        # Get the agent's class name
        agent_class_name = agent.__class__.__name__
        # Get the agent's model name
        model_name = agent.model
        # Get the agent's docstring
        docstring = inspect.getdoc(agent)
        # Format the information
        info = f"Agent Class: {agent_class_name}\nModel Name: {model_name}\nDocstring: {docstring}"
        return info
    except Exception as e:
        print(f"Error getting agent info: {e}")
        return "Error getting agent info."


# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        fixed_answer = "This is a default answer."
        print(f"Agent returning fixed answer: {fixed_answer}")
        return fixed_answer


def get_all_questions():
    """
    Fetches all available questions from the API.
    """
    yield from run_test_on_questions(False, False)

def run_test_on_all_questions():
    """
    Runs tests on all available questions by forwarding yields from run_test_on_questions.
    """
    yield from run_test_on_questions(False, True)

def run_test_on_random_question():
    """
    Runs a single test on a random available question by forwarding yields from run_test_on_questions.
    """
    yield from run_test_on_questions(True, True)


def run_test_on_questions(use_random_question: bool, run_agent:bool):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """

    global agent
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/random-question" if use_random_question else f"{api_url}/questions"


    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    info = "# started request"
    yield info, None
    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_dataset_raw = response.json()
        questions_dataset = [questions_dataset_raw] if use_random_question else questions_dataset_raw
        yield info, None
        if not questions_dataset:
             print("Fetched questions list is empty.")
             yield info +"\n\nFetched questions list is empty or invalid format.", None
             return
        print(f"Fetched {len(questions_dataset)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        yield f"Error fetching questions: {e}", None
        return
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         yield f"Error decoding server response for questions: {e}", None
         return
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        yield f"An unexpected error occurred fetching questions: {e}", None
        return

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    # loop over all questions
    for i, questions_data in enumerate(questions_dataset):

        agent.memory.reset()
        images = []
        task_id = questions_data.get("task_id")
        question_text = questions_data.get("question")
        file_name = questions_data.get("file_name")
        if (file_name != "" and file_name is not None):
            question_text = question_text + f"\n\nYou can download the correspondig file using the download tool with the task id: {task_id}."
            fileData = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
            # check if file is an image
            if fileData.headers['Content-Type'] in ['image/png', 'image/jpeg']:
                image = Image.open(BytesIO(fileData.content)).convert("RGB")
                images = [image]
            if fileData.headers['Content-Type'] in ['audio/mpeg', 'audio/wav']:
                # Load the audio file using Whisper
                model = whisper.load_model("base")
                # MP3-Datei von der API abrufen
                with open("temp_audio.mp3", "wb") as f:
                    f.write(fileData.content)

                # Transkription durchführen
                audioContent = model.transcribe("temp_audio.mp3")
                question_text = question_text + f"\n\nTranscription: {audioContent['text']}"
        info += f"\n\nRunning agent on question {i+1}/{len(questions_dataset)}:\n  - task_id: {task_id}\n  - question: {question_text}"
        yield info, None
        if not task_id or question_text is None:
            yield info+ f"\nError in question data: {questions_data}", None
            return
        try:
            submitted_answer = agent.run(question_text, images=images) if run_agent else "-- no agent interaction --"
            info += f"\n  - got answer {submitted_answer}"
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer, "FileInfo": file_name})
        except Exception as e:
                print(f"Error running agent on task {task_id}: {e}")
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}", "FileInfo": file_name})

        if not answers_payload:
            print("Agent did not produce any answers.")
            yield info + "\nAgent did not produce any answers.", pd.DataFrame(results_log)
            return

        # 5. Submit
        
        try:
            results_df = pd.DataFrame(results_log)
            yield info + "\nGot an answer from agent", results_df
        except Exception as e:
            status_message = f"An unexpected error occurred during submission: {e}"
            print(status_message)
            results_df = pd.DataFrame(results_log)
            yield status_message, results_df
            return



def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """

    return "We are not there yet", None
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


def fetch_ollama_models() -> list:
    """
    Fetches available models from the Ollama server.
    :return: List of available models.
    """
    try:
        response = requests.get("http://localhost:11434/api/tags")
        response.raise_for_status()
        data = response.json()
        return [model["name"] for model in data["models"]]
    except requests.exceptions.RequestException as e:
        print(f"Error fetching Ollama models: {e}")
        return ["None"]
def fetch_lmstudio_models() -> list:
    """
    Fetches available models from the LM Studio server.
    :return: List of available models.
    """
    try:
        response = requests.get("http://localhost:1234/v1/models")
        response.raise_for_status()
        data = response.json()
        return [model["id"] for model in data["data"]]
    except requests.exceptions.RequestException as e:
        print(f"Error fetching LM Studio models: {e}")
        return ["None"]


available_models = ["None"]

def update_available_models(provider:str):
    """
    Fetches available models based on the selected provider.
    :param provider: The selected provider name.
    :return: Update object for the model dropdown.
    """
    global available_models
    print(f"Selected provider: {provider}")
    
    match provider:
        case "hugging face":
            available_models = ["None", "Qwen/Qwen2.5-Coder-32B-Instruct", "Qwen/Qwen2.5-Omni-7B"]
        case "Ollama":
            available_models = fetch_ollama_models()
        case "LMStudio":
            available_models = fetch_lmstudio_models()
        case "Gemini":
            available_models = ["None", "Gemini-2.0-flash-exp", "Gemini-2.0-flash-lite"]
        case "Anthropic":   
            available_models = ["None", "claude-3"] # just for later options, model name possibly wrong
        case "OpenAI":
            available_models = ["None", "gpt-4o", "gpt-3.5-turbo"] # just for later options, model name possibly wrong
        case "Basic Agent":
            available_models = ["None"]
        case _:
            available_models = ["None"]
    
    print(f"Available models for {provider}: {available_models}")


    return gr.Dropdown(choices=available_models)



# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")

    agent_info_text = gr.Text(label="Agent Name", value=get_agent_info(), interactive=False, visible=True)

    gr.Markdown(
        """
        **Instructions:**

        Select a provider and then model to generate the agent.
        """
    )

    provider_select = gr.Dropdown(
        label="Select Provider",
        choices=["Basic Agent", "LMStudio", "Ollama", "hugging face", "Gemini", "Anthropic", "OpenAI"],
        interactive=True,
        visible=True,
        multiselect=False)

    model_select = gr.Dropdown(
        label="Select Model",
        choices=available_models,
        interactive=True,
        visible=True,
        multiselect=False) 

    # changing the provider will change the available models
    provider_select.input(fn=update_available_models, inputs=provider_select, outputs=[model_select])
    
    # changing a model will update the agent (see select_agent)
    model_select.change(fn=select_agent, inputs=[provider_select, model_select])

    # in case of running on HF space, we support the login button
    # we somehow need to find out, if this is running on HF space or not
    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    run_test_button = gr.Button("Run Test on Random Question")

    run_multiple_tests_button = gr.Button("Run tests on all questions")

    run_get_questions_button = gr.Button("Get Questions")  

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_test_button.click(
        fn=run_test_on_random_question,
        outputs=[status_output, results_table]
    )

    run_multiple_tests_button.click(
        fn=run_test_on_all_questions,
        outputs=[status_output, results_table]
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

    run_get_questions_button.click(
        fn=get_all_questions,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)