Update agents.py
Browse files
agents.py
CHANGED
@@ -6,7 +6,6 @@ from mcp import StdioServerParameters
|
|
6 |
from huggingface_hub import HfApi, login
|
7 |
from dotenv import load_dotenv
|
8 |
from typing import Optional
|
9 |
-
from models.gemini_model import GeminiModel
|
10 |
import requests
|
11 |
import re
|
12 |
import string
|
@@ -26,7 +25,6 @@ def download_file(task_id: str) -> str:
|
|
26 |
Args:
|
27 |
task_id: the ID of the task to download the file for.
|
28 |
"""
|
29 |
-
# Implement your file download logic here
|
30 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
31 |
if data.status_code == 200:
|
32 |
file_path = f"/tmp/{task_id}"
|
@@ -44,7 +42,6 @@ def get_file_content_as_text(task_id: str) -> str:
|
|
44 |
Args:
|
45 |
task_id: the ID of the task to get the file content for.
|
46 |
"""
|
47 |
-
# Implement your file content retrieval logic here
|
48 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
49 |
if data.status_code == 200:
|
50 |
return data.text
|
@@ -59,12 +56,11 @@ def load_hf_model(modelName: str):
|
|
59 |
:param modelName: Name of the model
|
60 |
:return: model
|
61 |
"""
|
62 |
-
load_dotenv()
|
63 |
|
64 |
# for local usage, we might use a hf token to log in
|
65 |
# hf_token = os.getenv("hugging_face")
|
66 |
-
# login(token=hf_token) #
|
67 |
-
# Modell initialisieren
|
68 |
model = HfApiModel(model_id=modelName)
|
69 |
return model
|
70 |
|
@@ -75,7 +71,6 @@ def load_ollama_model(modelName: str):
|
|
75 |
:param modelName: Name of the model
|
76 |
:return: model (via OpenAI compatible API)
|
77 |
"""
|
78 |
-
# Modell initialisieren
|
79 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:11434/v1")
|
80 |
return model
|
81 |
|
@@ -85,21 +80,18 @@ def load_lmStudio_model(modelName: str):
|
|
85 |
:param modelName: Name of the model
|
86 |
:return: model, accessible through the OpenAI compatible API
|
87 |
"""
|
88 |
-
# Modell initialisieren
|
89 |
-
#model = LiteLLMModel(model_id=modelName, api_base="http://localhost:1234")
|
90 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:1234/v1")
|
91 |
return model
|
92 |
|
93 |
def load_gemini_model(model_name: str):
|
94 |
"""
|
95 |
-
Loads
|
96 |
:return: model
|
97 |
"""
|
98 |
try:
|
99 |
print(f"Gemini API Key: {os.getenv('GEMINI_API_KEY')}")
|
100 |
model = LiteLLMModel(model_id=f"gemini/{model_name}",
|
101 |
api_key=os.getenv("GEMINI_API_KEY"))
|
102 |
-
#model = GeminiModel(api_key=os.getenv("GEMINI_API_KEY"))
|
103 |
return model
|
104 |
except Exception as e:
|
105 |
print("Error loading Gemini model:", e)
|
@@ -108,7 +100,6 @@ def load_gemini_model(model_name: str):
|
|
108 |
|
109 |
|
110 |
def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
111 |
-
# Modell initialisieren
|
112 |
|
113 |
match model_type:
|
114 |
case "hugging face":
|
@@ -123,31 +114,11 @@ def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
|
123 |
print("Model type not supported.")
|
124 |
return None
|
125 |
|
126 |
-
#model = load_lmStudio_model("gemma-3-4b-it")
|
127 |
-
#model = load_gemini_model()
|
128 |
-
#mopip del = HfApiModel()
|
129 |
-
#model=InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct")
|
130 |
-
#model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
131 |
# Tools laden
|
132 |
web_search_tool = DuckDuckGoSearchTool()
|
133 |
final_answer_tool = FinalAnswerTool()
|
134 |
visit_webpage_tool = VisitWebpageTool()
|
135 |
-
|
136 |
-
#speech_to_text_tool = SpeechToTextTool()
|
137 |
-
#transcript_tool = load_tool("maguid28/TranscriptTool", trust_remote_code=True)
|
138 |
-
|
139 |
-
#mcp_tool_collection = ToolCollection.from_mcp(server_parameters, trust_remote_code=True)
|
140 |
-
#with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
|
141 |
-
# mcp_tool_agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True)
|
142 |
-
|
143 |
-
#server_parameters = StdioServerParameters(
|
144 |
-
# command="uv",
|
145 |
-
# args=["--quiet", "[email protected]"],
|
146 |
-
# env={"UV_PYTHON": "3.12", **os.environ},
|
147 |
-
#)
|
148 |
-
#
|
149 |
-
#with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
|
150 |
-
# mcp_agent = CodeAgent(tools=[*tool_collection.tools], model=model, add_base_tools=True)
|
151 |
|
152 |
variation_agent = CodeAgent(
|
153 |
model=model,
|
|
|
6 |
from huggingface_hub import HfApi, login
|
7 |
from dotenv import load_dotenv
|
8 |
from typing import Optional
|
|
|
9 |
import requests
|
10 |
import re
|
11 |
import string
|
|
|
25 |
Args:
|
26 |
task_id: the ID of the task to download the file for.
|
27 |
"""
|
|
|
28 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
29 |
if data.status_code == 200:
|
30 |
file_path = f"/tmp/{task_id}"
|
|
|
42 |
Args:
|
43 |
task_id: the ID of the task to get the file content for.
|
44 |
"""
|
|
|
45 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
46 |
if data.status_code == 200:
|
47 |
return data.text
|
|
|
56 |
:param modelName: Name of the model
|
57 |
:return: model
|
58 |
"""
|
59 |
+
load_dotenv()
|
60 |
|
61 |
# for local usage, we might use a hf token to log in
|
62 |
# hf_token = os.getenv("hugging_face")
|
63 |
+
# login(token=hf_token) # Login at hugging face
|
|
|
64 |
model = HfApiModel(model_id=modelName)
|
65 |
return model
|
66 |
|
|
|
71 |
:param modelName: Name of the model
|
72 |
:return: model (via OpenAI compatible API)
|
73 |
"""
|
|
|
74 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:11434/v1")
|
75 |
return model
|
76 |
|
|
|
80 |
:param modelName: Name of the model
|
81 |
:return: model, accessible through the OpenAI compatible API
|
82 |
"""
|
|
|
|
|
83 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:1234/v1")
|
84 |
return model
|
85 |
|
86 |
def load_gemini_model(model_name: str):
|
87 |
"""
|
88 |
+
Loads the gemini model
|
89 |
:return: model
|
90 |
"""
|
91 |
try:
|
92 |
print(f"Gemini API Key: {os.getenv('GEMINI_API_KEY')}")
|
93 |
model = LiteLLMModel(model_id=f"gemini/{model_name}",
|
94 |
api_key=os.getenv("GEMINI_API_KEY"))
|
|
|
95 |
return model
|
96 |
except Exception as e:
|
97 |
print("Error loading Gemini model:", e)
|
|
|
100 |
|
101 |
|
102 |
def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
|
|
103 |
|
104 |
match model_type:
|
105 |
case "hugging face":
|
|
|
114 |
print("Model type not supported.")
|
115 |
return None
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
# Tools laden
|
118 |
web_search_tool = DuckDuckGoSearchTool()
|
119 |
final_answer_tool = FinalAnswerTool()
|
120 |
visit_webpage_tool = VisitWebpageTool()
|
121 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
variation_agent = CodeAgent(
|
124 |
model=model,
|