Spaces:
Build error
Build error
Matthew Hollings
commited on
Commit
·
3d96507
1
Parent(s):
4565d47
Use my fine-tuned model from huggingface
Browse files- .gitignore +2 -1
- app.py +1 -1
- fine-tuning-for-casual-language-model.ipynb +119 -151
.gitignore
CHANGED
|
@@ -2,4 +2,5 @@ __pycache__
|
|
| 2 |
flagged/
|
| 3 |
gutenberg-dammit-files-v002.zip
|
| 4 |
tmp_trainer
|
| 5 |
-
*.gz
|
|
|
|
|
|
| 2 |
flagged/
|
| 3 |
gutenberg-dammit-files-v002.zip
|
| 4 |
tmp_trainer
|
| 5 |
+
*.gz
|
| 6 |
+
gpt2-poetry-model
|
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import gradio as gr
|
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
# Set up the generatove model transformer pipeline
|
| 6 |
-
generator = pipeline("text-generation", model="
|
| 7 |
|
| 8 |
# A sequence of lines both those typed in and the line so far
|
| 9 |
# when save is clicked the txt file is downloaded
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
# Set up the generatove model transformer pipeline
|
| 6 |
+
generator = pipeline("text-generation", model="matthh/gpt2-poetry-model")
|
| 7 |
|
| 8 |
# A sequence of lines both those typed in and the line so far
|
| 9 |
# when save is clicked the txt file is downloaded
|
fine-tuning-for-casual-language-model.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -11,7 +11,7 @@
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
-
"execution_count":
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
|
@@ -43,29 +43,16 @@
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
"cell_type": "code",
|
| 46 |
-
"execution_count":
|
| 47 |
"metadata": {},
|
| 48 |
-
"outputs": [
|
| 49 |
-
{
|
| 50 |
-
"ename": "ImportError",
|
| 51 |
-
"evalue": "This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers.",
|
| 52 |
-
"output_type": "error",
|
| 53 |
-
"traceback": [
|
| 54 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 55 |
-
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
| 56 |
-
"Cell \u001b[0;32mIn [4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mcheck_min_version\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m4.23.0.dev0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
| 57 |
-
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/utils/__init__.py:32\u001b[0m, in \u001b[0;36mcheck_min_version\u001b[0;34m(min_version)\u001b[0m\n\u001b[1;32m 30\u001b[0m error_message \u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mThis example requires a minimum version of \u001b[39m\u001b[39m{\u001b[39;00mmin_version\u001b[39m}\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 31\u001b[0m error_message \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m but the version found is \u001b[39m\u001b[39m{\u001b[39;00m__version__\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[0;32m---> 32\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mImportError\u001b[39;00m(\n\u001b[1;32m 33\u001b[0m error_message\n\u001b[1;32m 34\u001b[0m \u001b[39m+\u001b[39m (\n\u001b[1;32m 35\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 36\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mversions of HuggingFace Transformers.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 37\u001b[0m )\n\u001b[1;32m 38\u001b[0m )\n",
|
| 58 |
-
"\u001b[0;31mImportError\u001b[0m: This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers."
|
| 59 |
-
]
|
| 60 |
-
}
|
| 61 |
-
],
|
| 62 |
"source": [
|
| 63 |
"# check_min_version(\"4.23.0.dev0\")"
|
| 64 |
]
|
| 65 |
},
|
| 66 |
{
|
| 67 |
"cell_type": "code",
|
| 68 |
-
"execution_count":
|
| 69 |
"metadata": {},
|
| 70 |
"outputs": [],
|
| 71 |
"source": [
|
|
@@ -74,7 +61,7 @@
|
|
| 74 |
},
|
| 75 |
{
|
| 76 |
"cell_type": "code",
|
| 77 |
-
"execution_count":
|
| 78 |
"metadata": {},
|
| 79 |
"outputs": [],
|
| 80 |
"source": [
|
|
@@ -90,90 +77,23 @@
|
|
| 90 |
},
|
| 91 |
{
|
| 92 |
"cell_type": "code",
|
| 93 |
-
"execution_count":
|
| 94 |
"metadata": {},
|
| 95 |
"outputs": [
|
| 96 |
{
|
| 97 |
"name": "stderr",
|
| 98 |
"output_type": "stream",
|
| 99 |
"text": [
|
| 100 |
-
"
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
"name": "stdout",
|
| 105 |
-
"output_type": "stream",
|
| 106 |
-
"text": [
|
| 107 |
-
"Downloading and preparing dataset csv/merve--poetry to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a...\n"
|
| 108 |
]
|
| 109 |
},
|
| 110 |
{
|
| 111 |
"data": {
|
| 112 |
"application/vnd.jupyter.widget-view+json": {
|
| 113 |
-
"model_id": "
|
| 114 |
-
"version_major": 2,
|
| 115 |
-
"version_minor": 0
|
| 116 |
-
},
|
| 117 |
-
"text/plain": [
|
| 118 |
-
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 119 |
-
]
|
| 120 |
-
},
|
| 121 |
-
"metadata": {},
|
| 122 |
-
"output_type": "display_data"
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"data": {
|
| 126 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 127 |
-
"model_id": "32c10441ff20404cb153f6b27f16a829",
|
| 128 |
-
"version_major": 2,
|
| 129 |
-
"version_minor": 0
|
| 130 |
-
},
|
| 131 |
-
"text/plain": [
|
| 132 |
-
"Downloading data: 0%| | 0.00/606k [00:00<?, ?B/s]"
|
| 133 |
-
]
|
| 134 |
-
},
|
| 135 |
-
"metadata": {},
|
| 136 |
-
"output_type": "display_data"
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"data": {
|
| 140 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 141 |
-
"model_id": "7ca47bc06937463e91d3948d7703ac64",
|
| 142 |
-
"version_major": 2,
|
| 143 |
-
"version_minor": 0
|
| 144 |
-
},
|
| 145 |
-
"text/plain": [
|
| 146 |
-
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 147 |
-
]
|
| 148 |
-
},
|
| 149 |
-
"metadata": {},
|
| 150 |
-
"output_type": "display_data"
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"data": {
|
| 154 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 155 |
-
"model_id": "1631dbdc53d04b14a8a7733883bbd1cc",
|
| 156 |
-
"version_major": 2,
|
| 157 |
-
"version_minor": 0
|
| 158 |
-
},
|
| 159 |
-
"text/plain": [
|
| 160 |
-
"0 tables [00:00, ? tables/s]"
|
| 161 |
-
]
|
| 162 |
-
},
|
| 163 |
-
"metadata": {},
|
| 164 |
-
"output_type": "display_data"
|
| 165 |
-
},
|
| 166 |
-
{
|
| 167 |
-
"name": "stdout",
|
| 168 |
-
"output_type": "stream",
|
| 169 |
-
"text": [
|
| 170 |
-
"Dataset csv downloaded and prepared to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a. Subsequent calls will reuse this data.\n"
|
| 171 |
-
]
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"data": {
|
| 175 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 176 |
-
"model_id": "3c93229d66ad46d9a88da5f6a9528f2e",
|
| 177 |
"version_major": 2,
|
| 178 |
"version_minor": 0
|
| 179 |
},
|
|
@@ -191,7 +111,7 @@
|
|
| 191 |
},
|
| 192 |
{
|
| 193 |
"cell_type": "code",
|
| 194 |
-
"execution_count":
|
| 195 |
"metadata": {},
|
| 196 |
"outputs": [],
|
| 197 |
"source": [
|
|
@@ -200,16 +120,18 @@
|
|
| 200 |
},
|
| 201 |
{
|
| 202 |
"cell_type": "code",
|
| 203 |
-
"execution_count":
|
| 204 |
"metadata": {},
|
| 205 |
"outputs": [],
|
| 206 |
"source": [
|
| 207 |
-
"config = AutoConfig.from_pretrained('gpt2')"
|
|
|
|
|
|
|
| 208 |
]
|
| 209 |
},
|
| 210 |
{
|
| 211 |
"cell_type": "code",
|
| 212 |
-
"execution_count":
|
| 213 |
"metadata": {},
|
| 214 |
"outputs": [
|
| 215 |
{
|
|
@@ -218,7 +140,7 @@
|
|
| 218 |
"Embedding(50257, 768)"
|
| 219 |
]
|
| 220 |
},
|
| 221 |
-
"execution_count":
|
| 222 |
"metadata": {},
|
| 223 |
"output_type": "execute_result"
|
| 224 |
}
|
|
@@ -228,12 +150,13 @@
|
|
| 228 |
" \"gpt2\",\n",
|
| 229 |
" config=config\n",
|
| 230 |
")\n",
|
|
|
|
| 231 |
"model.resize_token_embeddings(len(tokenizer))"
|
| 232 |
]
|
| 233 |
},
|
| 234 |
{
|
| 235 |
"cell_type": "code",
|
| 236 |
-
"execution_count":
|
| 237 |
"metadata": {},
|
| 238 |
"outputs": [
|
| 239 |
{
|
|
@@ -245,7 +168,7 @@
|
|
| 245 |
"})"
|
| 246 |
]
|
| 247 |
},
|
| 248 |
-
"execution_count":
|
| 249 |
"metadata": {},
|
| 250 |
"output_type": "execute_result"
|
| 251 |
}
|
|
@@ -256,7 +179,7 @@
|
|
| 256 |
},
|
| 257 |
{
|
| 258 |
"cell_type": "code",
|
| 259 |
-
"execution_count":
|
| 260 |
"metadata": {},
|
| 261 |
"outputs": [
|
| 262 |
{
|
|
@@ -265,7 +188,7 @@
|
|
| 265 |
"'Mythology & Folklore'"
|
| 266 |
]
|
| 267 |
},
|
| 268 |
-
"execution_count":
|
| 269 |
"metadata": {},
|
| 270 |
"output_type": "execute_result"
|
| 271 |
}
|
|
@@ -276,7 +199,7 @@
|
|
| 276 |
},
|
| 277 |
{
|
| 278 |
"cell_type": "code",
|
| 279 |
-
"execution_count":
|
| 280 |
"metadata": {},
|
| 281 |
"outputs": [
|
| 282 |
{
|
|
@@ -290,7 +213,7 @@
|
|
| 290 |
"})"
|
| 291 |
]
|
| 292 |
},
|
| 293 |
-
"execution_count":
|
| 294 |
"metadata": {},
|
| 295 |
"output_type": "execute_result"
|
| 296 |
}
|
|
@@ -301,7 +224,7 @@
|
|
| 301 |
},
|
| 302 |
{
|
| 303 |
"cell_type": "code",
|
| 304 |
-
"execution_count":
|
| 305 |
"metadata": {},
|
| 306 |
"outputs": [],
|
| 307 |
"source": [
|
|
@@ -312,7 +235,7 @@
|
|
| 312 |
},
|
| 313 |
{
|
| 314 |
"cell_type": "code",
|
| 315 |
-
"execution_count":
|
| 316 |
"metadata": {},
|
| 317 |
"outputs": [],
|
| 318 |
"source": [
|
|
@@ -330,7 +253,7 @@
|
|
| 330 |
},
|
| 331 |
{
|
| 332 |
"cell_type": "code",
|
| 333 |
-
"execution_count":
|
| 334 |
"metadata": {},
|
| 335 |
"outputs": [],
|
| 336 |
"source": [
|
|
@@ -341,29 +264,14 @@
|
|
| 341 |
},
|
| 342 |
{
|
| 343 |
"cell_type": "code",
|
| 344 |
-
"execution_count":
|
| 345 |
"metadata": {},
|
| 346 |
"outputs": [
|
| 347 |
-
{
|
| 348 |
-
"data": {
|
| 349 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 350 |
-
"model_id": "82c09dbdfa1a47d79607a4c9729fb286",
|
| 351 |
-
"version_major": 2,
|
| 352 |
-
"version_minor": 0
|
| 353 |
-
},
|
| 354 |
-
"text/plain": [
|
| 355 |
-
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 356 |
-
]
|
| 357 |
-
},
|
| 358 |
-
"metadata": {},
|
| 359 |
-
"output_type": "display_data"
|
| 360 |
-
},
|
| 361 |
{
|
| 362 |
"name": "stderr",
|
| 363 |
"output_type": "stream",
|
| 364 |
"text": [
|
| 365 |
-
"
|
| 366 |
-
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model.\n"
|
| 367 |
]
|
| 368 |
}
|
| 369 |
],
|
|
@@ -380,7 +288,7 @@
|
|
| 380 |
},
|
| 381 |
{
|
| 382 |
"cell_type": "code",
|
| 383 |
-
"execution_count":
|
| 384 |
"metadata": {},
|
| 385 |
"outputs": [],
|
| 386 |
"source": [
|
|
@@ -389,7 +297,7 @@
|
|
| 389 |
},
|
| 390 |
{
|
| 391 |
"cell_type": "code",
|
| 392 |
-
"execution_count":
|
| 393 |
"metadata": {},
|
| 394 |
"outputs": [],
|
| 395 |
"source": [
|
|
@@ -413,22 +321,15 @@
|
|
| 413 |
},
|
| 414 |
{
|
| 415 |
"cell_type": "code",
|
| 416 |
-
"execution_count":
|
| 417 |
"metadata": {},
|
| 418 |
"outputs": [
|
| 419 |
{
|
| 420 |
-
"
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
},
|
| 426 |
-
"text/plain": [
|
| 427 |
-
"Grouping texts in chunks of 1024: 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 428 |
-
]
|
| 429 |
-
},
|
| 430 |
-
"metadata": {},
|
| 431 |
-
"output_type": "display_data"
|
| 432 |
}
|
| 433 |
],
|
| 434 |
"source": [
|
|
@@ -443,7 +344,7 @@
|
|
| 443 |
},
|
| 444 |
{
|
| 445 |
"cell_type": "code",
|
| 446 |
-
"execution_count":
|
| 447 |
"metadata": {},
|
| 448 |
"outputs": [],
|
| 449 |
"source": [
|
|
@@ -459,14 +360,30 @@
|
|
| 459 |
},
|
| 460 |
{
|
| 461 |
"cell_type": "code",
|
| 462 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
"metadata": {},
|
| 464 |
"outputs": [],
|
| 465 |
"source": [
|
| 466 |
"# Initialize our Trainer\n",
|
| 467 |
"trainer = Trainer(\n",
|
| 468 |
" model=model,\n",
|
| 469 |
-
"
|
| 470 |
" train_dataset=train_dataset,\n",
|
| 471 |
" # eval_dataset=eval_dataset,\n",
|
| 472 |
" tokenizer=tokenizer,\n",
|
|
@@ -483,7 +400,7 @@
|
|
| 483 |
},
|
| 484 |
{
|
| 485 |
"cell_type": "code",
|
| 486 |
-
"execution_count":
|
| 487 |
"metadata": {},
|
| 488 |
"outputs": [
|
| 489 |
{
|
|
@@ -558,18 +475,69 @@
|
|
| 558 |
],
|
| 559 |
"source": [
|
| 560 |
"# Training\n",
|
| 561 |
-
"checkpoint = None\n",
|
| 562 |
-
"train_result = trainer.train(resume_from_checkpoint=checkpoint)\n",
|
| 563 |
-
"trainer.save_model() # Saves the tokenizer too for easy upload\n",
|
| 564 |
"\n",
|
| 565 |
-
"metrics = train_result.metrics\n",
|
| 566 |
"\n",
|
| 567 |
-
"max_train_samples = (len(train_dataset))\n",
|
| 568 |
-
"metrics[\"train_samples\"] = min(max_train_samples, len(train_dataset))\n",
|
| 569 |
"\n",
|
| 570 |
-
"trainer.log_metrics(\"train\", metrics)\n",
|
| 571 |
-
"trainer.save_metrics(\"train\", metrics)\n",
|
| 572 |
-
"trainer.save_state()"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
]
|
| 574 |
}
|
| 575 |
],
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
+
"execution_count": 4,
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
|
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
"cell_type": "code",
|
| 46 |
+
"execution_count": 5,
|
| 47 |
"metadata": {},
|
| 48 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
"source": [
|
| 50 |
"# check_min_version(\"4.23.0.dev0\")"
|
| 51 |
]
|
| 52 |
},
|
| 53 |
{
|
| 54 |
"cell_type": "code",
|
| 55 |
+
"execution_count": 6,
|
| 56 |
"metadata": {},
|
| 57 |
"outputs": [],
|
| 58 |
"source": [
|
|
|
|
| 61 |
},
|
| 62 |
{
|
| 63 |
"cell_type": "code",
|
| 64 |
+
"execution_count": 7,
|
| 65 |
"metadata": {},
|
| 66 |
"outputs": [],
|
| 67 |
"source": [
|
|
|
|
| 77 |
},
|
| 78 |
{
|
| 79 |
"cell_type": "code",
|
| 80 |
+
"execution_count": 8,
|
| 81 |
"metadata": {},
|
| 82 |
"outputs": [
|
| 83 |
{
|
| 84 |
"name": "stderr",
|
| 85 |
"output_type": "stream",
|
| 86 |
"text": [
|
| 87 |
+
"/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/huggingface_hub/utils/_deprecation.py:97: FutureWarning: Deprecated argument(s) used in 'dataset_info': token. Will not be supported from version '0.12'.\n",
|
| 88 |
+
" warnings.warn(message, FutureWarning)\n",
|
| 89 |
+
"Using custom data configuration merve--poetry-ca9a13ef5858cc3a\n",
|
| 90 |
+
"Found cached dataset csv (/Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
]
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"data": {
|
| 95 |
"application/vnd.jupyter.widget-view+json": {
|
| 96 |
+
"model_id": "67606d054e4a4b2f9ddf99f07c02c328",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
"version_major": 2,
|
| 98 |
"version_minor": 0
|
| 99 |
},
|
|
|
|
| 111 |
},
|
| 112 |
{
|
| 113 |
"cell_type": "code",
|
| 114 |
+
"execution_count": 9,
|
| 115 |
"metadata": {},
|
| 116 |
"outputs": [],
|
| 117 |
"source": [
|
|
|
|
| 120 |
},
|
| 121 |
{
|
| 122 |
"cell_type": "code",
|
| 123 |
+
"execution_count": 10,
|
| 124 |
"metadata": {},
|
| 125 |
"outputs": [],
|
| 126 |
"source": [
|
| 127 |
+
"config = AutoConfig.from_pretrained('gpt2')\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# max_seq_length"
|
| 130 |
]
|
| 131 |
},
|
| 132 |
{
|
| 133 |
"cell_type": "code",
|
| 134 |
+
"execution_count": 11,
|
| 135 |
"metadata": {},
|
| 136 |
"outputs": [
|
| 137 |
{
|
|
|
|
| 140 |
"Embedding(50257, 768)"
|
| 141 |
]
|
| 142 |
},
|
| 143 |
+
"execution_count": 11,
|
| 144 |
"metadata": {},
|
| 145 |
"output_type": "execute_result"
|
| 146 |
}
|
|
|
|
| 150 |
" \"gpt2\",\n",
|
| 151 |
" config=config\n",
|
| 152 |
")\n",
|
| 153 |
+
"model.max_seq_length = 128\n",
|
| 154 |
"model.resize_token_embeddings(len(tokenizer))"
|
| 155 |
]
|
| 156 |
},
|
| 157 |
{
|
| 158 |
"cell_type": "code",
|
| 159 |
+
"execution_count": 12,
|
| 160 |
"metadata": {},
|
| 161 |
"outputs": [
|
| 162 |
{
|
|
|
|
| 168 |
"})"
|
| 169 |
]
|
| 170 |
},
|
| 171 |
+
"execution_count": 12,
|
| 172 |
"metadata": {},
|
| 173 |
"output_type": "execute_result"
|
| 174 |
}
|
|
|
|
| 179 |
},
|
| 180 |
{
|
| 181 |
"cell_type": "code",
|
| 182 |
+
"execution_count": 13,
|
| 183 |
"metadata": {},
|
| 184 |
"outputs": [
|
| 185 |
{
|
|
|
|
| 188 |
"'Mythology & Folklore'"
|
| 189 |
]
|
| 190 |
},
|
| 191 |
+
"execution_count": 13,
|
| 192 |
"metadata": {},
|
| 193 |
"output_type": "execute_result"
|
| 194 |
}
|
|
|
|
| 199 |
},
|
| 200 |
{
|
| 201 |
"cell_type": "code",
|
| 202 |
+
"execution_count": 14,
|
| 203 |
"metadata": {},
|
| 204 |
"outputs": [
|
| 205 |
{
|
|
|
|
| 213 |
"})"
|
| 214 |
]
|
| 215 |
},
|
| 216 |
+
"execution_count": 14,
|
| 217 |
"metadata": {},
|
| 218 |
"output_type": "execute_result"
|
| 219 |
}
|
|
|
|
| 224 |
},
|
| 225 |
{
|
| 226 |
"cell_type": "code",
|
| 227 |
+
"execution_count": 15,
|
| 228 |
"metadata": {},
|
| 229 |
"outputs": [],
|
| 230 |
"source": [
|
|
|
|
| 235 |
},
|
| 236 |
{
|
| 237 |
"cell_type": "code",
|
| 238 |
+
"execution_count": 16,
|
| 239 |
"metadata": {},
|
| 240 |
"outputs": [],
|
| 241 |
"source": [
|
|
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
+
"execution_count": 17,
|
| 257 |
"metadata": {},
|
| 258 |
"outputs": [],
|
| 259 |
"source": [
|
|
|
|
| 264 |
},
|
| 265 |
{
|
| 266 |
"cell_type": "code",
|
| 267 |
+
"execution_count": 18,
|
| 268 |
"metadata": {},
|
| 269 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
{
|
| 271 |
"name": "stderr",
|
| 272 |
"output_type": "stream",
|
| 273 |
"text": [
|
| 274 |
+
"Loading cached processed dataset at /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a/cache-62fd9c772e30c8d3.arrow\n"
|
|
|
|
| 275 |
]
|
| 276 |
}
|
| 277 |
],
|
|
|
|
| 288 |
},
|
| 289 |
{
|
| 290 |
"cell_type": "code",
|
| 291 |
+
"execution_count": 19,
|
| 292 |
"metadata": {},
|
| 293 |
"outputs": [],
|
| 294 |
"source": [
|
|
|
|
| 297 |
},
|
| 298 |
{
|
| 299 |
"cell_type": "code",
|
| 300 |
+
"execution_count": 20,
|
| 301 |
"metadata": {},
|
| 302 |
"outputs": [],
|
| 303 |
"source": [
|
|
|
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"cell_type": "code",
|
| 324 |
+
"execution_count": 21,
|
| 325 |
"metadata": {},
|
| 326 |
"outputs": [
|
| 327 |
{
|
| 328 |
+
"name": "stderr",
|
| 329 |
+
"output_type": "stream",
|
| 330 |
+
"text": [
|
| 331 |
+
"Loading cached processed dataset at /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a/cache-88d7c64be469684a.arrow\n"
|
| 332 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
}
|
| 334 |
],
|
| 335 |
"source": [
|
|
|
|
| 344 |
},
|
| 345 |
{
|
| 346 |
"cell_type": "code",
|
| 347 |
+
"execution_count": 22,
|
| 348 |
"metadata": {},
|
| 349 |
"outputs": [],
|
| 350 |
"source": [
|
|
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
+
"execution_count": 25,
|
| 364 |
+
"metadata": {},
|
| 365 |
+
"outputs": [],
|
| 366 |
+
"source": [
|
| 367 |
+
"training_args = TrainingArguments(\n",
|
| 368 |
+
" output_dir=\"gpt2-poetry-model\", \n",
|
| 369 |
+
" overwrite_output_dir=True,\n",
|
| 370 |
+
" # per_gpu_train_batch_size=256\n",
|
| 371 |
+
" per_device_train_batch_size=16,\n",
|
| 372 |
+
" push_to_hub=True,\n",
|
| 373 |
+
" push_to_hub_token=\"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\"\n",
|
| 374 |
+
")"
|
| 375 |
+
]
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"cell_type": "code",
|
| 379 |
+
"execution_count": 26,
|
| 380 |
"metadata": {},
|
| 381 |
"outputs": [],
|
| 382 |
"source": [
|
| 383 |
"# Initialize our Trainer\n",
|
| 384 |
"trainer = Trainer(\n",
|
| 385 |
" model=model,\n",
|
| 386 |
+
" args=training_args,\n",
|
| 387 |
" train_dataset=train_dataset,\n",
|
| 388 |
" # eval_dataset=eval_dataset,\n",
|
| 389 |
" tokenizer=tokenizer,\n",
|
|
|
|
| 400 |
},
|
| 401 |
{
|
| 402 |
"cell_type": "code",
|
| 403 |
+
"execution_count": null,
|
| 404 |
"metadata": {},
|
| 405 |
"outputs": [
|
| 406 |
{
|
|
|
|
| 475 |
],
|
| 476 |
"source": [
|
| 477 |
"# Training\n",
|
| 478 |
+
"# checkpoint = None\n",
|
| 479 |
+
"# train_result = trainer.train(resume_from_checkpoint=checkpoint)\n",
|
| 480 |
+
"# trainer.save_model() # Saves the tokenizer too for easy upload\n",
|
| 481 |
"\n",
|
| 482 |
+
"# metrics = train_result.metrics\n",
|
| 483 |
"\n",
|
| 484 |
+
"# max_train_samples = (len(train_dataset))\n",
|
| 485 |
+
"# metrics[\"train_samples\"] = min(max_train_samples, len(train_dataset))\n",
|
| 486 |
"\n",
|
| 487 |
+
"# trainer.log_metrics(\"train\", metrics)\n",
|
| 488 |
+
"# trainer.save_metrics(\"train\", metrics)\n",
|
| 489 |
+
"# trainer.save_state()\n",
|
| 490 |
+
"# # Upload the the hugging face hub for easy use in inference.\n",
|
| 491 |
+
"# trainer.push_to_hub()"
|
| 492 |
+
]
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"cell_type": "code",
|
| 496 |
+
"execution_count": 27,
|
| 497 |
+
"metadata": {},
|
| 498 |
+
"outputs": [
|
| 499 |
+
{
|
| 500 |
+
"data": {
|
| 501 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 502 |
+
"model_id": "2cec8af2b332409bb857695a7b099653",
|
| 503 |
+
"version_major": 2,
|
| 504 |
+
"version_minor": 0
|
| 505 |
+
},
|
| 506 |
+
"text/plain": [
|
| 507 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
| 508 |
+
]
|
| 509 |
+
},
|
| 510 |
+
"metadata": {},
|
| 511 |
+
"output_type": "display_data"
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"name": "stderr",
|
| 515 |
+
"output_type": "stream",
|
| 516 |
+
"text": [
|
| 517 |
+
"Saving model checkpoint to gpt2-poetry-model\n",
|
| 518 |
+
"Configuration saved in gpt2-poetry-model/config.json\n",
|
| 519 |
+
"Model weights saved in gpt2-poetry-model/pytorch_model.bin\n",
|
| 520 |
+
"tokenizer config file saved in gpt2-poetry-model/tokenizer_config.json\n",
|
| 521 |
+
"Special tokens file saved in gpt2-poetry-model/special_tokens_map.json\n"
|
| 522 |
+
]
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"ename": "AttributeError",
|
| 526 |
+
"evalue": "'Trainer' object has no attribute 'repo'",
|
| 527 |
+
"output_type": "error",
|
| 528 |
+
"traceback": [
|
| 529 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 530 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 531 |
+
"Cell \u001b[0;32mIn [27], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mhuggingface_hub\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m notebook_login\n\u001b[1;32m 2\u001b[0m notebook_login()\n\u001b[0;32m----> 3\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 532 |
+
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/trainer.py:2677\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2675\u001b[0m \u001b[39mreturn\u001b[39;00m\n\u001b[0;32m-> 2677\u001b[0m git_head_commit_url \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrepo\u001b[39m.\u001b[39mpush_to_hub(commit_message\u001b[39m=\u001b[39mcommit_message, blocking\u001b[39m=\u001b[39mblocking)\n\u001b[1;32m 2678\u001b[0m \u001b[39m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2679\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39mshould_save:\n",
|
| 533 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
|
| 534 |
+
]
|
| 535 |
+
}
|
| 536 |
+
],
|
| 537 |
+
"source": [
|
| 538 |
+
"from huggingface_hub import notebook_login\n",
|
| 539 |
+
"notebook_login()\n",
|
| 540 |
+
"trainer.push_to_hub()"
|
| 541 |
]
|
| 542 |
}
|
| 543 |
],
|