Spaces:
Runtime error
Runtime error
Commit
·
9e9fb6f
1
Parent(s):
ae479b2
App init + req.txt
Browse files- app.py +166 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import base64
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
from transformers import AutoProcessor, AutoModel
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 14 |
+
|
| 15 |
+
# Load example dataset
|
| 16 |
+
dataset = load_dataset("xzuyn/dalle-3_vs_sd-v1-5_dpo", num_proc=8)
|
| 17 |
+
|
| 18 |
+
processor_name = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
| 19 |
+
model_name = "yuvalkirstain/PickScore_v1"
|
| 20 |
+
processor = AutoProcessor.from_pretrained(processor_name)
|
| 21 |
+
model = AutoModel.from_pretrained(model_name, torch_dtype=dtype).to(device)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def decode_image(image: str) -> Image:
|
| 25 |
+
"""
|
| 26 |
+
Decodes base64 string to PIL image.
|
| 27 |
+
Args:
|
| 28 |
+
image: base64 string
|
| 29 |
+
Returns:
|
| 30 |
+
PIL image
|
| 31 |
+
"""
|
| 32 |
+
img_byte_arr = base64.b64decode(image)
|
| 33 |
+
img_byte_arr = io.BytesIO(img_byte_arr)
|
| 34 |
+
img_byte_arr = Image.open(img_byte_arr)
|
| 35 |
+
return img_byte_arr
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_preference(img_1: Image.Image, img_2: Image.Image, caption: str) -> Image.Image:
|
| 39 |
+
"""
|
| 40 |
+
Returns the preference of the caption for the two images.
|
| 41 |
+
Args:
|
| 42 |
+
img_1: PIL image
|
| 43 |
+
img_2: PIL image
|
| 44 |
+
caption: string
|
| 45 |
+
Returns:
|
| 46 |
+
preference image: PIL image
|
| 47 |
+
"""
|
| 48 |
+
imgs = [img_1, img_2]
|
| 49 |
+
logits = get_logits(caption, imgs)
|
| 50 |
+
preference = logits.argmax().item()
|
| 51 |
+
|
| 52 |
+
return imgs[preference]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def sample_example() -> Tuple[Image.Image, Image.Image, Image.Image, str]:
|
| 56 |
+
"""
|
| 57 |
+
Samples a random example from the dataset and displays it.
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
img_1: PIL image
|
| 61 |
+
img_2: PIL image
|
| 62 |
+
preference: PIL image
|
| 63 |
+
caption: string
|
| 64 |
+
"""
|
| 65 |
+
example = dataset["train"][np.random.randint(0, len(dataset["train"]))]
|
| 66 |
+
img_1 = decode_image(example["jpg_0"])
|
| 67 |
+
img_2 = decode_image(example["jpg_1"])
|
| 68 |
+
caption = example["caption"]
|
| 69 |
+
imgs = [img_1, img_2]
|
| 70 |
+
logits = get_logits(caption, imgs)
|
| 71 |
+
preference = logits.argmax().item()
|
| 72 |
+
return (img_1, img_2, imgs[preference], caption)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_logits(caption: str, imgs: List[Image.Image]) -> torch.Tensor:
|
| 76 |
+
"""
|
| 77 |
+
Returns the logits for the caption and images.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
caption: string
|
| 81 |
+
imgs: list of PIL images
|
| 82 |
+
Returns:
|
| 83 |
+
logits: torch.Tensor
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
inputs = processor(
|
| 87 |
+
text=caption,
|
| 88 |
+
images=imgs,
|
| 89 |
+
return_tensors="pt",
|
| 90 |
+
padding=True,
|
| 91 |
+
truncation=True,
|
| 92 |
+
max_length=77,
|
| 93 |
+
).to(device)
|
| 94 |
+
inputs["pixel_values"] = (
|
| 95 |
+
inputs["pixel_values"].half() if device == "cuda" else inputs["pixel_values"]
|
| 96 |
+
)
|
| 97 |
+
outputs = model(**inputs)
|
| 98 |
+
logits_per_image = outputs.logits_per_image
|
| 99 |
+
|
| 100 |
+
return logits_per_image
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
### Description
|
| 104 |
+
title = r"""
|
| 105 |
+
<h1 align="center">Aesthetic Scorer: CLIP fine-tuned for DPO scoring </h1>
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
description = r"""
|
| 109 |
+
<b> This is a demo for the paper <a href="https://arxiv.org/abs/2109.04436">Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation </a> </b> <br>
|
| 110 |
+
|
| 111 |
+
How to use this demo: <br>
|
| 112 |
+
1. Upload two images generated using the same caption.
|
| 113 |
+
2. Enter the caption used to generate the images.
|
| 114 |
+
3. Click on the "Get Preference" button to get the image which scores higher on user preferences according to the model. <br>
|
| 115 |
+
<b> OR </b> <br>
|
| 116 |
+
1. Click on the "Random Example" button to get a random example from a <a href="https://huggingface.co/datasets/xzuyn/dalle-3_vs_sd-v1-5_dpo">Dalle 3 vs SD 1.5 DPO dataset. </a><br>
|
| 117 |
+
|
| 118 |
+
This demo demonstrates the use of this CLIP variant for DPO scoring. The scores can then be used for DPO fine-tuning with these <a href="https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo">scripts. </a><br>
|
| 119 |
+
|
| 120 |
+
Accuracy on the <a href="https://huggingface.co/datasets/xzuyn/dalle-3_vs_sd-v1-5_dpo">Dalle 3 vs SD 1.5 DPO dataset: </a><br>
|
| 121 |
+
<a href="https://huggingface.co/yuvalkirstain/PickScore_v1">PickScore_v1</a> - 97.3 <br>
|
| 122 |
+
<a href="https://huggingface.co/CIDAS/clipseg-rd64-refined">CLIPSeg</a> - 70.9 <br>
|
| 123 |
+
<a href="https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K">CLIP-ViT-H-14-laion2B-s32B-b79K</a> - 82.3 <br>
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
citation = r"""
|
| 127 |
+
📝 **Citation**
|
| 128 |
+
```bibtex
|
| 129 |
+
@inproceedings{Kirstain2023PickaPicAO,
|
| 130 |
+
title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation},
|
| 131 |
+
author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy},
|
| 132 |
+
year={2023}
|
| 133 |
+
}
|
| 134 |
+
```
|
| 135 |
+
"""
|
| 136 |
+
|
| 137 |
+
with gr.Blocks() as demo:
|
| 138 |
+
gr.Markdown(title)
|
| 139 |
+
gr.Markdown(description)
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
first_image = gr.Image(height=400, width=400, label="First Image")
|
| 143 |
+
second_image = gr.Image(height=400, width=400, label="Second Image")
|
| 144 |
+
|
| 145 |
+
caption_box = gr.Textbox(lines=1, label="Caption")
|
| 146 |
+
|
| 147 |
+
with gr.Row():
|
| 148 |
+
image_button = gr.Button("Get Preference")
|
| 149 |
+
random_example = gr.Button("Random Example")
|
| 150 |
+
|
| 151 |
+
image_output = gr.Image(height=500, width=500, label="Preference")
|
| 152 |
+
|
| 153 |
+
image_button.click(
|
| 154 |
+
get_preference,
|
| 155 |
+
inputs=[first_image, second_image, caption_box],
|
| 156 |
+
outputs=image_output,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
random_example.click(
|
| 160 |
+
sample_example, outputs=[first_image, second_image, image_output, caption_box]
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
gr.Markdown(citation)
|
| 164 |
+
|
| 165 |
+
if __name__ == "__main__":
|
| 166 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|