Spaces:
Running
Running
import os | |
# Use /tmp for all runtime-related folders | |
os.environ["STREAMLIT_HOME"] = "/tmp" | |
os.environ["STREAMLIT_RUNTIME_METRICS_ENABLED"] = "false" | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" | |
os.environ["HF_HOME"] = "/tmp/huggingface" # safer replacement for TRANSFORMERS_CACHE | |
os.environ["STREAMLIT_WATCHED_MODULES"] = "" | |
import streamlit as st | |
import torch | |
import joblib | |
import numpy as np | |
import random | |
from PIL import Image | |
from transformers import AutoTokenizer, AutoModel, ViTModel, ViTImageProcessor | |
# CPU device only | |
device = torch.device("cpu") | |
# Define Swahili VQA Model | |
class SwahiliVQAModel(torch.nn.Module): | |
def __init__(self, num_answers): | |
super().__init__() | |
self.vision_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') | |
self.text_encoder = AutoModel.from_pretrained("benjamin/roberta-base-wechsel-swahili") | |
self.fusion = torch.nn.Sequential( | |
torch.nn.Linear(768 + 768, 512), | |
torch.nn.ReLU(), | |
torch.nn.Dropout(0.3), | |
torch.nn.LayerNorm(512) | |
) | |
self.classifier = torch.nn.Linear(512, num_answers) | |
def forward(self, image, input_ids, attention_mask): | |
vision_outputs = self.vision_encoder(pixel_values=image) | |
image_feats = vision_outputs.last_hidden_state[:, 0, :] | |
text_outputs = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask) | |
text_feats = text_outputs.last_hidden_state[:, 0, :] | |
combined = torch.cat([image_feats, text_feats], dim=1) | |
fused = self.fusion(combined) | |
return self.classifier(fused) | |
# Load label encoder | |
le = joblib.load("Vit_3895_label_encoder_best.pkl") | |
# Load model weights normally โ no override | |
model = SwahiliVQAModel(num_answers=len(le.classes_)).to(device) | |
state_dict = torch.load("Vit_3895_best_model_epoch25.pth", map_location=device) | |
model.load_state_dict(state_dict) | |
model.eval() | |
# Load tokenizer and processor | |
tokenizer = AutoTokenizer.from_pretrained("benjamin/roberta-base-wechsel-swahili") | |
vit_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') | |
# Streamlit UI | |
st.set_page_config(page_title="Swahili VQA", layout="wide") | |
st.title("๐ฆ Swahili Visual Question Answering (VQA)") | |
uploaded_image = st.file_uploader("๐ Pakia picha hapa:", type=["jpg", "jpeg", "png"]) | |
def generate_random_color(): | |
return f"rgb({random.randint(150, 255)}, {random.randint(80, 200)}, {random.randint(80, 200)})" | |
col1, col2 = st.columns([1, 2], gap="large") | |
with col1: | |
if uploaded_image: | |
st.image(uploaded_image, caption="Picha Iliyopakiwa", use_container_width=True) | |
st.markdown("<div style='margin-bottom: 25px;'></div>", unsafe_allow_html=True) | |
with col2: | |
st.markdown("<div style='padding-top: 15px;'>", unsafe_allow_html=True) | |
question = st.text_input("๐ฌAndika swali lako hapa:", key="question_input") | |
submit_button = st.button("๐ฉTuma") | |
st.markdown("</div>", unsafe_allow_html=True) | |
if submit_button and uploaded_image and question: | |
with st.spinner("๐ Inachakata jibu..."): | |
image = Image.open(uploaded_image).convert("RGB") | |
image_tensor = vit_processor(images=image, return_tensors="pt")["pixel_values"] | |
inputs = tokenizer(question, max_length=128, padding="max_length", truncation=True, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
attention_mask = inputs["attention_mask"] | |
with torch.no_grad(): | |
logits = model(image_tensor, input_ids, attention_mask) | |
probs = torch.softmax(logits, dim=1) | |
top_probs, top_indices = torch.topk(probs, 5) | |
decoded_answers = le.inverse_transform(top_indices.cpu().numpy()[0]) | |
results = [ | |
{"answer": ans, "confidence": round(prob * 100, 2)} | |
for ans, prob in zip(decoded_answers, top_probs[0].tolist()) | |
] | |
results = sorted(results, key=lambda x: x["confidence"], reverse=True) | |
st.subheader("Majibu Yanayowezekana:") | |
max_confidence = max(result["confidence"] for result in results) | |
for i, pred in enumerate(results): | |
bar_width = (pred["confidence"] / max_confidence) * 70 | |
color = generate_random_color() | |
st.markdown( | |
f""" | |
<div style="margin: 4px 0; padding: 2px 0; {'border-bottom: 1px solid rgba(150, 150, 150, 0.1);' if i < len(results)-1 else ''}"> | |
<div style="font-size: 14px; font-weight: bold; margin-bottom: 2px;"> | |
{pred['answer']} | |
</div> | |
<div style="display: flex; align-items: center; gap: 6px;"> | |
<div style="width: {bar_width}%; height: 8px; border-radius: 3px; background: {color};"></div> | |
<div style="font-size: 13px; min-width: 45px;"> | |
{pred['confidence']}% | |
</div> | |
</div> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
else: | |
st.info("๐ฅ Pakia picha na andika swali kisha bonyeza Tuma ili kupata jibu.") | |