Spaces:
Sleeping
Sleeping
| import os | |
| # β Use /tmp for all cache & runtime folders (Hugging Face safe) | |
| os.environ["STREAMLIT_HOME"] = "/tmp" | |
| os.environ["STREAMLIT_RUNTIME_METRICS_ENABLED"] = "false" | |
| os.environ["STREAMLIT_WATCHED_MODULES"] = "" | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" | |
| os.environ["HF_HOME"] = "/tmp/huggingface" | |
| import streamlit as st | |
| import torch | |
| import joblib | |
| import numpy as np | |
| import random | |
| from PIL import Image | |
| from transformers import AutoTokenizer, AutoModel, ViTModel, ViTImageProcessor | |
| # Use CPU only | |
| device = torch.device("cpu") | |
| # === Define Swahili VQA Model === | |
| class SwahiliVQAModel(torch.nn.Module): | |
| def __init__(self, num_answers): | |
| super().__init__() | |
| self.vision_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') | |
| self.text_encoder = AutoModel.from_pretrained("benjamin/roberta-base-wechsel-swahili") | |
| self.fusion = torch.nn.Sequential( | |
| torch.nn.Linear(768 + 768, 512), | |
| torch.nn.ReLU(), | |
| torch.nn.Dropout(0.3), | |
| torch.nn.LayerNorm(512) | |
| ) | |
| self.classifier = torch.nn.Linear(512, num_answers) | |
| def forward(self, image, input_ids, attention_mask): | |
| vision_outputs = self.vision_encoder(pixel_values=image) | |
| image_feats = vision_outputs.last_hidden_state[:, 0, :] | |
| text_outputs = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask) | |
| text_feats = text_outputs.last_hidden_state[:, 0, :] | |
| combined = torch.cat([image_feats, text_feats], dim=1) | |
| fused = self.fusion(combined) | |
| return self.classifier(fused) | |
| # === Load model and encoders === | |
| le = joblib.load("Vit_3895_label_encoder_best.pkl") | |
| model = SwahiliVQAModel(num_answers=len(le.classes_)).to(device) | |
| # Load full state dict (already trained classifier) | |
| state_dict = torch.load("Vit_3895_best_model_epoch25.pth", map_location=device) | |
| model.load_state_dict(state_dict) | |
| model.eval() | |
| tokenizer = AutoTokenizer.from_pretrained("benjamin/roberta-base-wechsel-swahili") | |
| vit_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') | |
| # === Streamlit App === | |
| st.set_page_config(page_title="Swahili VQA", layout="wide") | |
| st.title("π¦ Swahili Visual Question Answering App") | |
| #st.markdown("**Pakia picha na uliza swali kwa Kiswahili**") | |
| st.info("π₯ Pakia picha na andika swali kisha bonyeza Tuma ili kupata jibu.") | |
| uploaded_image = st.file_uploader("π Pakia picha hapa:", type=["jpg", "jpeg", "png"]) | |
| def generate_random_color(): | |
| return f"rgb({random.randint(150, 255)}, {random.randint(80, 200)}, {random.randint(80, 200)})" | |
| col1, col2 = st.columns([1, 2], gap="large") | |
| with col1: | |
| if uploaded_image: | |
| st.image(uploaded_image, caption="Picha Iliyopakiwa") | |
| with col2: | |
| st.markdown("<div style='padding-top: 15px;'>", unsafe_allow_html=True) | |
| question = st.text_input("π¬ Andika swali lako hapa:") | |
| submit_button = st.button("π© Tuma") | |
| st.markdown("</div>", unsafe_allow_html=True) | |
| if submit_button and uploaded_image and question: | |
| with st.spinner("π Inachakata jibu..."): | |
| image = Image.open(uploaded_image).convert("RGB") | |
| image_tensor = vit_processor(images=image, return_tensors="pt")["pixel_values"] | |
| inputs = tokenizer(question, max_length=128, padding="max_length", truncation=True, return_tensors="pt") | |
| input_ids = inputs["input_ids"] | |
| attention_mask = inputs["attention_mask"] | |
| with torch.no_grad(): | |
| logits = model(image_tensor, input_ids, attention_mask) | |
| probs = torch.softmax(logits, dim=1) | |
| top_probs, top_indices = torch.topk(probs, 5) | |
| decoded_answers = le.inverse_transform(top_indices.cpu().numpy()[0]) | |
| results = [ | |
| {"answer": ans, "confidence": round(prob * 100, 2)} | |
| for ans, prob in zip(decoded_answers, top_probs[0].tolist()) | |
| ] | |
| results = sorted(results, key=lambda x: x["confidence"], reverse=True) | |
| st.subheader("π Majibu Yanayowezekana:") | |
| max_confidence = max(result["confidence"] for result in results) | |
| for i, pred in enumerate(results): | |
| bar_width = (pred["confidence"] / max_confidence) * 70 | |
| color = generate_random_color() | |
| st.markdown( | |
| f""" | |
| <div style="margin: 4px 0; padding: 2px 0; {'border-bottom: 1px solid rgba(150, 150, 150, 0.1);' if i < len(results)-1 else ''}"> | |
| <div style="font-size: 14px; font-weight: bold; margin-bottom: 2px;"> | |
| {pred['answer']} | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 6px;"> | |
| <div style="width: {bar_width}%; height: 8px; border-radius: 3px; background: {color};"></div> | |
| <div style="font-size: 13px; min-width: 45px;"> | |
| {pred['confidence']}% | |
| </div> | |
| </div> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| else: | |
| pass # or just remove the else block entirely | |
| # === Sidebar Footer Description (ALWAYS VISIBLE) === | |
| st.sidebar.markdown(""" | |
| --- | |
| ## Swahili VQA App | |
| This app allows users to ask questions about images in **Swahili**. Powered by a multimodal AI model trained on visual and textual data. | |
| ## π How to Use | |
| 1. π€ Upload an image. | |
| 2. π¬ Type a question in Swahili. | |
| 3. π© Click **Tuma**. | |
| 4. π€ The model will predict top 5 possible answers with confidence score. | |
| ##2025 | |
| """) |