Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
import os
|
2 |
|
3 |
-
# Use /tmp for all runtime
|
4 |
os.environ["STREAMLIT_HOME"] = "/tmp"
|
5 |
os.environ["STREAMLIT_RUNTIME_METRICS_ENABLED"] = "false"
|
6 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
7 |
-
os.environ["HF_HOME"] = "/tmp/huggingface" # safer replacement for TRANSFORMERS_CACHE
|
8 |
os.environ["STREAMLIT_WATCHED_MODULES"] = ""
|
9 |
-
|
10 |
-
|
11 |
|
12 |
import streamlit as st
|
13 |
import torch
|
@@ -17,10 +15,10 @@ import random
|
|
17 |
from PIL import Image
|
18 |
from transformers import AutoTokenizer, AutoModel, ViTModel, ViTImageProcessor
|
19 |
|
20 |
-
# CPU
|
21 |
device = torch.device("cpu")
|
22 |
|
23 |
-
# Define Swahili VQA Model
|
24 |
class SwahiliVQAModel(torch.nn.Module):
|
25 |
def __init__(self, num_answers):
|
26 |
super().__init__()
|
@@ -43,20 +41,19 @@ class SwahiliVQAModel(torch.nn.Module):
|
|
43 |
fused = self.fusion(combined)
|
44 |
return self.classifier(fused)
|
45 |
|
46 |
-
# Load
|
47 |
le = joblib.load("Vit_3895_label_encoder_best.pkl")
|
48 |
-
|
49 |
-
# Load model weights normally — no override
|
50 |
model = SwahiliVQAModel(num_answers=len(le.classes_)).to(device)
|
|
|
|
|
51 |
state_dict = torch.load("Vit_3895_best_model_epoch25.pth", map_location=device)
|
52 |
model.load_state_dict(state_dict)
|
53 |
model.eval()
|
54 |
|
55 |
-
# Load tokenizer and processor
|
56 |
tokenizer = AutoTokenizer.from_pretrained("benjamin/roberta-base-wechsel-swahili")
|
57 |
vit_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
|
58 |
|
59 |
-
# Streamlit
|
60 |
st.set_page_config(page_title="Swahili VQA", layout="wide")
|
61 |
st.title("🦜 Swahili Visual Question Answering (VQA)")
|
62 |
|
@@ -69,13 +66,12 @@ col1, col2 = st.columns([1, 2], gap="large")
|
|
69 |
|
70 |
with col1:
|
71 |
if uploaded_image:
|
72 |
-
st.image(uploaded_image, caption="Picha Iliyopakiwa"
|
73 |
-
st.markdown("<div style='margin-bottom: 25px;'></div>", unsafe_allow_html=True)
|
74 |
|
75 |
with col2:
|
76 |
st.markdown("<div style='padding-top: 15px;'>", unsafe_allow_html=True)
|
77 |
-
question = st.text_input("💬Andika swali lako hapa:"
|
78 |
-
submit_button = st.button("📩Tuma")
|
79 |
st.markdown("</div>", unsafe_allow_html=True)
|
80 |
|
81 |
if submit_button and uploaded_image and question:
|
@@ -100,10 +96,9 @@ with col2:
|
|
100 |
]
|
101 |
|
102 |
results = sorted(results, key=lambda x: x["confidence"], reverse=True)
|
|
|
103 |
|
104 |
-
st.subheader("Majibu Yanayowezekana:")
|
105 |
max_confidence = max(result["confidence"] for result in results)
|
106 |
-
|
107 |
for i, pred in enumerate(results):
|
108 |
bar_width = (pred["confidence"] / max_confidence) * 70
|
109 |
color = generate_random_color()
|
|
|
1 |
import os
|
2 |
|
3 |
+
# ✅ Use /tmp for all cache & runtime folders (Hugging Face safe)
|
4 |
os.environ["STREAMLIT_HOME"] = "/tmp"
|
5 |
os.environ["STREAMLIT_RUNTIME_METRICS_ENABLED"] = "false"
|
|
|
|
|
6 |
os.environ["STREAMLIT_WATCHED_MODULES"] = ""
|
7 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
8 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
9 |
|
10 |
import streamlit as st
|
11 |
import torch
|
|
|
15 |
from PIL import Image
|
16 |
from transformers import AutoTokenizer, AutoModel, ViTModel, ViTImageProcessor
|
17 |
|
18 |
+
# Use CPU only
|
19 |
device = torch.device("cpu")
|
20 |
|
21 |
+
# === Define Swahili VQA Model ===
|
22 |
class SwahiliVQAModel(torch.nn.Module):
|
23 |
def __init__(self, num_answers):
|
24 |
super().__init__()
|
|
|
41 |
fused = self.fusion(combined)
|
42 |
return self.classifier(fused)
|
43 |
|
44 |
+
# === Load model and encoders ===
|
45 |
le = joblib.load("Vit_3895_label_encoder_best.pkl")
|
|
|
|
|
46 |
model = SwahiliVQAModel(num_answers=len(le.classes_)).to(device)
|
47 |
+
|
48 |
+
# Load full state dict (already trained classifier)
|
49 |
state_dict = torch.load("Vit_3895_best_model_epoch25.pth", map_location=device)
|
50 |
model.load_state_dict(state_dict)
|
51 |
model.eval()
|
52 |
|
|
|
53 |
tokenizer = AutoTokenizer.from_pretrained("benjamin/roberta-base-wechsel-swahili")
|
54 |
vit_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
|
55 |
|
56 |
+
# === Streamlit App ===
|
57 |
st.set_page_config(page_title="Swahili VQA", layout="wide")
|
58 |
st.title("🦜 Swahili Visual Question Answering (VQA)")
|
59 |
|
|
|
66 |
|
67 |
with col1:
|
68 |
if uploaded_image:
|
69 |
+
st.image(uploaded_image, caption="Picha Iliyopakiwa")
|
|
|
70 |
|
71 |
with col2:
|
72 |
st.markdown("<div style='padding-top: 15px;'>", unsafe_allow_html=True)
|
73 |
+
question = st.text_input("💬 Andika swali lako hapa:")
|
74 |
+
submit_button = st.button("📩 Tuma")
|
75 |
st.markdown("</div>", unsafe_allow_html=True)
|
76 |
|
77 |
if submit_button and uploaded_image and question:
|
|
|
96 |
]
|
97 |
|
98 |
results = sorted(results, key=lambda x: x["confidence"], reverse=True)
|
99 |
+
st.subheader("🔎 Majibu Yanayowezekana:")
|
100 |
|
|
|
101 |
max_confidence = max(result["confidence"] for result in results)
|
|
|
102 |
for i, pred in enumerate(results):
|
103 |
bar_width = (pred["confidence"] / max_confidence) * 70
|
104 |
color = generate_random_color()
|