Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import random
|
|
| 7 |
import uuid
|
| 8 |
from datetime import datetime
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
-
|
| 11 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 12 |
from typing import *
|
| 13 |
import torch
|
|
@@ -18,16 +17,14 @@ from PIL import Image
|
|
| 18 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 19 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 20 |
from trellis.utils import render_utils, postprocessing_utils
|
| 21 |
-
|
| 22 |
NUM_INFERENCE_STEPS = 8
|
| 23 |
-
|
| 24 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 25 |
-
|
| 26 |
# Constants
|
| 27 |
MAX_SEED = np.iinfo(np.int32).max
|
| 28 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 29 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 30 |
|
|
|
|
| 31 |
def start_session(req: gr.Request):
|
| 32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 33 |
os.makedirs(user_dir, exist_ok=True)
|
|
@@ -70,12 +67,10 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
|
| 70 |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
| 71 |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
| 72 |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
| 73 |
-
|
| 74 |
mesh = edict(
|
| 75 |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
| 76 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 77 |
)
|
| 78 |
-
|
| 79 |
return gs, mesh
|
| 80 |
|
| 81 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
@@ -106,16 +101,13 @@ def generate_flux_image(
|
|
| 106 |
generator=generator,
|
| 107 |
).images[0]
|
| 108 |
|
| 109 |
-
# Guardar la imagen en el directorio temporal
|
| 110 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 111 |
os.makedirs(user_dir, exist_ok=True)
|
| 112 |
-
|
| 113 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 114 |
unique_id = str(uuid.uuid4())[:8]
|
| 115 |
filename = f"{timestamp}_{unique_id}.png"
|
| 116 |
filepath = os.path.join(user_dir, filename)
|
| 117 |
image.save(filepath)
|
| 118 |
-
|
| 119 |
return image
|
| 120 |
|
| 121 |
@spaces.GPU
|
|
@@ -167,23 +159,16 @@ def extract_glb(
|
|
| 167 |
torch.cuda.empty_cache()
|
| 168 |
return glb_path, glb_path
|
| 169 |
|
| 170 |
-
|
| 171 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 172 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 173 |
-
gs, _ = unpack_state(state)
|
| 174 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 175 |
-
gs.save_ply(gaussian_path)
|
| 176 |
-
torch.cuda.empty_cache()
|
| 177 |
-
return gaussian_path, gaussian_path
|
| 178 |
-
|
| 179 |
-
# Gradio Interface
|
| 180 |
with gr.Blocks() as demo:
|
| 181 |
gr.Markdown("""
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
| 185 |
""")
|
| 186 |
-
|
| 187 |
with gr.Row():
|
| 188 |
with gr.Column():
|
| 189 |
# Flux image generation inputs
|
|
@@ -196,25 +181,20 @@ with gr.Blocks() as demo:
|
|
| 196 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
| 197 |
with gr.Row():
|
| 198 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
| 199 |
-
|
| 200 |
# Botones separados
|
| 201 |
generate_image_btn = gr.Button("Generar Imagen")
|
| 202 |
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
| 203 |
-
|
| 204 |
with gr.Column():
|
| 205 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
| 206 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
with gr.Row():
|
| 211 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 212 |
-
|
| 213 |
-
|
| 214 |
with gr.Row():
|
| 215 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 216 |
-
|
| 217 |
-
|
| 218 |
# Variables adicionales para la generaci贸n 3D
|
| 219 |
with gr.Accordion("3D Generation Settings", open=False):
|
| 220 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
|
@@ -225,18 +205,18 @@ with gr.Blocks() as demo:
|
|
| 225 |
with gr.Row():
|
| 226 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 227 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 228 |
-
|
| 229 |
# Variables para la extracci贸n de GLB
|
| 230 |
with gr.Accordion("GLB Extraction Settings", open=False):
|
| 231 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 232 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 233 |
-
|
| 234 |
output_buf = gr.State()
|
| 235 |
|
| 236 |
# Event handlers
|
| 237 |
demo.load(start_session)
|
| 238 |
demo.unload(end_session)
|
| 239 |
-
|
| 240 |
# Generar imagen
|
| 241 |
generate_image_btn.click(
|
| 242 |
generate_flux_image,
|
|
@@ -246,7 +226,7 @@ with gr.Blocks() as demo:
|
|
| 246 |
lambda: gr.Button(interactive=True),
|
| 247 |
outputs=[generate_video_btn],
|
| 248 |
)
|
| 249 |
-
|
| 250 |
# Generar video
|
| 251 |
generate_video_btn.click(
|
| 252 |
get_seed,
|
|
@@ -268,13 +248,13 @@ with gr.Blocks() as demo:
|
|
| 268 |
],
|
| 269 |
outputs=[output_buf, video_output],
|
| 270 |
).then(
|
| 271 |
-
lambda:
|
| 272 |
-
outputs=[extract_glb_btn
|
| 273 |
)
|
| 274 |
-
|
| 275 |
video_output.clear(
|
| 276 |
-
lambda:
|
| 277 |
-
outputs=[extract_glb_btn
|
| 278 |
)
|
| 279 |
|
| 280 |
# Extraer GLB
|
|
@@ -286,22 +266,12 @@ with gr.Blocks() as demo:
|
|
| 286 |
lambda: gr.Button(interactive=True),
|
| 287 |
outputs=[download_glb],
|
| 288 |
)
|
| 289 |
-
|
| 290 |
-
# Extraer Gaussian
|
| 291 |
-
extract_gs_btn.click(
|
| 292 |
-
extract_gaussian,
|
| 293 |
-
inputs=[output_buf],
|
| 294 |
-
outputs=[model_output, download_gs],
|
| 295 |
-
).then(
|
| 296 |
-
lambda: gr.Button(interactive=True),
|
| 297 |
-
outputs=[download_gs],
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
model_output.clear(
|
| 301 |
lambda: gr.Button(interactive=False),
|
| 302 |
outputs=[download_glb],
|
| 303 |
)
|
| 304 |
-
|
| 305 |
# Initialize both pipelines
|
| 306 |
if __name__ == "__main__":
|
| 307 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
|
@@ -310,23 +280,26 @@ if __name__ == "__main__":
|
|
| 310 |
# Initialize Flux pipeline
|
| 311 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 312 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 313 |
-
|
| 314 |
dtype = torch.bfloat16
|
| 315 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
|
| 316 |
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
| 317 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
| 318 |
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
|
| 319 |
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
|
|
|
| 320 |
if ".gguf" in file_url:
|
| 321 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
| 322 |
else:
|
| 323 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
|
| 324 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
|
|
|
| 325 |
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
|
| 326 |
flux_pipeline.to("cuda")
|
|
|
|
| 327 |
# Initialize Trellis pipeline
|
| 328 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
|
| 329 |
trellis_pipeline.cuda()
|
|
|
|
| 330 |
try:
|
| 331 |
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
| 332 |
except:
|
|
|
|
| 7 |
import uuid
|
| 8 |
from datetime import datetime
|
| 9 |
from diffusers import DiffusionPipeline
|
|
|
|
| 10 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 11 |
from typing import *
|
| 12 |
import torch
|
|
|
|
| 17 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 18 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 19 |
from trellis.utils import render_utils, postprocessing_utils
|
|
|
|
| 20 |
NUM_INFERENCE_STEPS = 8
|
|
|
|
| 21 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
| 22 |
# Constants
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 25 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 26 |
|
| 27 |
+
# Funciones auxiliares
|
| 28 |
def start_session(req: gr.Request):
|
| 29 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 30 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
| 67 |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
| 68 |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
| 69 |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
|
|
|
| 70 |
mesh = edict(
|
| 71 |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
| 72 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 73 |
)
|
|
|
|
| 74 |
return gs, mesh
|
| 75 |
|
| 76 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
| 101 |
generator=generator,
|
| 102 |
).images[0]
|
| 103 |
|
|
|
|
| 104 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 105 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
| 106 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 107 |
unique_id = str(uuid.uuid4())[:8]
|
| 108 |
filename = f"{timestamp}_{unique_id}.png"
|
| 109 |
filepath = os.path.join(user_dir, filename)
|
| 110 |
image.save(filepath)
|
|
|
|
| 111 |
return image
|
| 112 |
|
| 113 |
@spaces.GPU
|
|
|
|
| 159 |
torch.cuda.empty_cache()
|
| 160 |
return glb_path, glb_path
|
| 161 |
|
| 162 |
+
# Interfaz Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
with gr.Blocks() as demo:
|
| 164 |
gr.Markdown("""
|
| 165 |
+
# UTPL - Conversi贸n de Texto a Imagen a objetos 3D usando IA
|
| 166 |
+
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*
|
| 167 |
+
**Autor:** Carlos Vargas
|
| 168 |
+
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) y Flux
|
| 169 |
+
**Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico
|
| 170 |
""")
|
| 171 |
+
|
| 172 |
with gr.Row():
|
| 173 |
with gr.Column():
|
| 174 |
# Flux image generation inputs
|
|
|
|
| 181 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
| 182 |
with gr.Row():
|
| 183 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
|
|
|
| 184 |
# Botones separados
|
| 185 |
generate_image_btn = gr.Button("Generar Imagen")
|
| 186 |
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
|
|
|
| 187 |
with gr.Column():
|
| 188 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
| 189 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
| 190 |
+
model_output = LitModel3D(label="Extracted GLB", exposure=8.0, height=400)
|
| 191 |
+
|
|
|
|
| 192 |
with gr.Row():
|
| 193 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 194 |
+
|
|
|
|
| 195 |
with gr.Row():
|
| 196 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 197 |
+
|
|
|
|
| 198 |
# Variables adicionales para la generaci贸n 3D
|
| 199 |
with gr.Accordion("3D Generation Settings", open=False):
|
| 200 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
|
|
|
| 205 |
with gr.Row():
|
| 206 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 207 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 208 |
+
|
| 209 |
# Variables para la extracci贸n de GLB
|
| 210 |
with gr.Accordion("GLB Extraction Settings", open=False):
|
| 211 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 212 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 213 |
+
|
| 214 |
output_buf = gr.State()
|
| 215 |
|
| 216 |
# Event handlers
|
| 217 |
demo.load(start_session)
|
| 218 |
demo.unload(end_session)
|
| 219 |
+
|
| 220 |
# Generar imagen
|
| 221 |
generate_image_btn.click(
|
| 222 |
generate_flux_image,
|
|
|
|
| 226 |
lambda: gr.Button(interactive=True),
|
| 227 |
outputs=[generate_video_btn],
|
| 228 |
)
|
| 229 |
+
|
| 230 |
# Generar video
|
| 231 |
generate_video_btn.click(
|
| 232 |
get_seed,
|
|
|
|
| 248 |
],
|
| 249 |
outputs=[output_buf, video_output],
|
| 250 |
).then(
|
| 251 |
+
lambda: gr.Button(interactive=True),
|
| 252 |
+
outputs=[extract_glb_btn],
|
| 253 |
)
|
| 254 |
+
|
| 255 |
video_output.clear(
|
| 256 |
+
lambda: gr.Button(interactive=False),
|
| 257 |
+
outputs=[extract_glb_btn],
|
| 258 |
)
|
| 259 |
|
| 260 |
# Extraer GLB
|
|
|
|
| 266 |
lambda: gr.Button(interactive=True),
|
| 267 |
outputs=[download_glb],
|
| 268 |
)
|
| 269 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
model_output.clear(
|
| 271 |
lambda: gr.Button(interactive=False),
|
| 272 |
outputs=[download_glb],
|
| 273 |
)
|
| 274 |
+
|
| 275 |
# Initialize both pipelines
|
| 276 |
if __name__ == "__main__":
|
| 277 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
|
|
|
| 280 |
# Initialize Flux pipeline
|
| 281 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 282 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
| 283 |
dtype = torch.bfloat16
|
| 284 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
|
| 285 |
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
| 286 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
| 287 |
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
|
| 288 |
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
| 289 |
+
|
| 290 |
if ".gguf" in file_url:
|
| 291 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
| 292 |
else:
|
| 293 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
|
| 294 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
| 295 |
+
|
| 296 |
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
|
| 297 |
flux_pipeline.to("cuda")
|
| 298 |
+
|
| 299 |
# Initialize Trellis pipeline
|
| 300 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
|
| 301 |
trellis_pipeline.cuda()
|
| 302 |
+
|
| 303 |
try:
|
| 304 |
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
| 305 |
except:
|