Spaces:
Sleeping
Sleeping
Create streamlit_app.py
Browse files- streamlit_app.py +1751 -0
streamlit_app.py
ADDED
|
@@ -0,0 +1,1751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
import json
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import time
|
| 7 |
+
import numpy as np
|
| 8 |
+
import altair as alt
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
from streamlit_lottie import st_lottie
|
| 13 |
+
import requests
|
| 14 |
+
import random
|
| 15 |
+
import plotly.graph_objects as go
|
| 16 |
+
from streamlit_lottie import st_lottie
|
| 17 |
+
|
| 18 |
+
# Configuration de la page
|
| 19 |
+
st.set_page_config(
|
| 20 |
+
page_title="API NLU Darija - Mohammed MEDIANI",
|
| 21 |
+
page_icon="🚀",
|
| 22 |
+
layout="wide",
|
| 23 |
+
initial_sidebar_state="expanded"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Fonctions utilitaires
|
| 27 |
+
def call_api(text):
|
| 28 |
+
"""Appelle l'API NLU Darija et retourne le résultat"""
|
| 29 |
+
api_url = "https://mediani-darija-aicc-api.hf.space/predict"
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
start_time = time.time()
|
| 33 |
+
response = requests.post(
|
| 34 |
+
api_url,
|
| 35 |
+
headers={"Content-Type": "application/json"},
|
| 36 |
+
data=json.dumps({"text": text})
|
| 37 |
+
)
|
| 38 |
+
response_time = (time.time() - start_time) * 1000 # en ms
|
| 39 |
+
|
| 40 |
+
if response.status_code == 200:
|
| 41 |
+
result = response.json()
|
| 42 |
+
return result, response_time
|
| 43 |
+
else:
|
| 44 |
+
return None, response_time
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.error(f"Erreur de connexion: {str(e)}")
|
| 47 |
+
return None, 0
|
| 48 |
+
|
| 49 |
+
def get_intent_description(intent):
|
| 50 |
+
"""Retourne la description d'une intention"""
|
| 51 |
+
descriptions = {
|
| 52 |
+
"consulter_solde": "L'utilisateur souhaite connaître son solde ou crédit restant sur son compte.",
|
| 53 |
+
"reclamer_facture": "L'utilisateur signale un problème avec sa facture ou conteste un montant facturé.",
|
| 54 |
+
"declarer_panne": "L'utilisateur signale un dysfonctionnement technique avec son service ou équipement.",
|
| 55 |
+
"info_forfait": "L'utilisateur demande des informations sur un forfait existant ou nouveau.",
|
| 56 |
+
"recuperer_mot_de_passe": "L'utilisateur a besoin d'aide pour récupérer ou réinitialiser son mot de passe.",
|
| 57 |
+
"salutations": "L'utilisateur salue le service client ou initie une conversation.",
|
| 58 |
+
"remerciements": "L'utilisateur exprime sa gratitude pour l'aide reçue.",
|
| 59 |
+
"demander_agent_humain": "L'utilisateur souhaite être mis en relation avec un conseiller humain.",
|
| 60 |
+
"hors_scope": "La demande ne correspond à aucune intention prédéfinie dans notre système."
|
| 61 |
+
}
|
| 62 |
+
return descriptions.get(intent, "Description non disponible")
|
| 63 |
+
|
| 64 |
+
def get_intent_icon(intent):
|
| 65 |
+
"""Retourne une icône associée à une intention"""
|
| 66 |
+
icons = {
|
| 67 |
+
"consulter_solde": "💰",
|
| 68 |
+
"reclamer_facture": "📄",
|
| 69 |
+
"declarer_panne": "🔧",
|
| 70 |
+
"info_forfait": "ℹ️",
|
| 71 |
+
"recuperer_mot_de_passe": "🔑",
|
| 72 |
+
"salutations": "👋",
|
| 73 |
+
"remerciements": "🙏",
|
| 74 |
+
"demander_agent_humain": "👨💼",
|
| 75 |
+
"hors_scope": "❓"
|
| 76 |
+
}
|
| 77 |
+
return icons.get(intent, "🔍")
|
| 78 |
+
|
| 79 |
+
def get_intent_color(intent):
|
| 80 |
+
"""Retourne une couleur associée à une intention"""
|
| 81 |
+
colors = {
|
| 82 |
+
"consulter_solde": "#1f77b4",
|
| 83 |
+
"reclamer_facture": "#ff7f0e",
|
| 84 |
+
"declarer_panne": "#d62728",
|
| 85 |
+
"info_forfait": "#2ca02c",
|
| 86 |
+
"recuperer_mot_de_passe": "#9467bd",
|
| 87 |
+
"salutations": "#8c564b",
|
| 88 |
+
"remerciements": "#e377c2",
|
| 89 |
+
"demander_agent_humain": "#7f7f7f",
|
| 90 |
+
"hors_scope": "#bcbd22"
|
| 91 |
+
}
|
| 92 |
+
return colors.get(intent, "#17becf")
|
| 93 |
+
|
| 94 |
+
def load_lottie(url):
|
| 95 |
+
"""Charge une animation Lottie depuis une URL"""
|
| 96 |
+
try:
|
| 97 |
+
r = requests.get(url)
|
| 98 |
+
if r.status_code != 200:
|
| 99 |
+
return None
|
| 100 |
+
return r.json()
|
| 101 |
+
except:
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
# Charger les animations
|
| 105 |
+
lottie_ai = load_lottie("https://assets8.lottiefiles.com/packages/lf20_ikvz7qhc.json")
|
| 106 |
+
lottie_process = load_lottie("https://assets6.lottiefiles.com/packages/lf20_khzniaya.json")
|
| 107 |
+
|
| 108 |
+
# Style CSS personnalisé
|
| 109 |
+
st.markdown("""
|
| 110 |
+
<style>
|
| 111 |
+
/* Style général */
|
| 112 |
+
.main-title {
|
| 113 |
+
font-size: 2.8rem !important;
|
| 114 |
+
color: #1E3A8A;
|
| 115 |
+
padding-bottom: 0.5rem;
|
| 116 |
+
border-bottom: 3px solid #3B82F6;
|
| 117 |
+
font-weight: 700;
|
| 118 |
+
text-shadow: 0px 2px 2px rgba(0,0,0,0.1);
|
| 119 |
+
margin-bottom: 1.5rem;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
.sub-title {
|
| 123 |
+
font-size: 1.8rem !important;
|
| 124 |
+
color: #1E3A8A;
|
| 125 |
+
margin-top: 1.5rem;
|
| 126 |
+
margin-bottom: 1rem;
|
| 127 |
+
font-weight: 600;
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
.section-title {
|
| 131 |
+
font-size: 1.4rem !important;
|
| 132 |
+
color: #2563EB;
|
| 133 |
+
margin-top: 1.2rem;
|
| 134 |
+
margin-bottom: 0.8rem;
|
| 135 |
+
font-weight: 500;
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
/* Boîtes d'information */
|
| 139 |
+
.info-box {
|
| 140 |
+
background-color: #F8FAFC;
|
| 141 |
+
padding: 1.5rem;
|
| 142 |
+
border-radius: 0.75rem;
|
| 143 |
+
border: 2px solid #E2E8F0;
|
| 144 |
+
margin-bottom: 1.5rem;
|
| 145 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.08);
|
| 146 |
+
color: #1A202C;
|
| 147 |
+
font-size: 16px;
|
| 148 |
+
line-height: 1.7;
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
.info-box p {
|
| 152 |
+
margin-bottom: 12px;
|
| 153 |
+
font-weight: 500;
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
.info-box strong {
|
| 157 |
+
color: #1E3A8A;
|
| 158 |
+
font-weight: 700;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
.info-box ul {
|
| 162 |
+
margin-left: 20px;
|
| 163 |
+
color: #4A5568;
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
.info-box li {
|
| 167 |
+
margin-bottom: 8px;
|
| 168 |
+
font-weight: 500;
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
.warning-box {
|
| 172 |
+
background-color: #FEF3C7;
|
| 173 |
+
padding: 1.2rem;
|
| 174 |
+
border-radius: 0.5rem;
|
| 175 |
+
border-left: 5px solid #F59E0B;
|
| 176 |
+
margin-bottom: 1.5rem;
|
| 177 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
.success-box {
|
| 181 |
+
background-color: #ECFDF5;
|
| 182 |
+
padding: 1.2rem;
|
| 183 |
+
border-radius: 0.5rem;
|
| 184 |
+
border-left: 5px solid #10B981;
|
| 185 |
+
margin-bottom: 1.5rem;
|
| 186 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
/* Boutons */
|
| 190 |
+
.stButton>button {
|
| 191 |
+
border-radius: 0.5rem;
|
| 192 |
+
font-weight: 500;
|
| 193 |
+
transition: all 0.3s ease;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
.stButton>button:hover {
|
| 197 |
+
transform: translateY(-2px);
|
| 198 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
.example-button {
|
| 202 |
+
margin: 0.3rem;
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
/* Tags et badges */
|
| 206 |
+
.intent-tag {
|
| 207 |
+
background-color: #1E3A8A;
|
| 208 |
+
color: white;
|
| 209 |
+
padding: 0.4rem 1rem;
|
| 210 |
+
border-radius: 2rem;
|
| 211 |
+
font-weight: bold;
|
| 212 |
+
display: inline-block;
|
| 213 |
+
margin-bottom: 0.8rem;
|
| 214 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
.badge {
|
| 218 |
+
padding: 0.2rem 0.6rem;
|
| 219 |
+
border-radius: 2rem;
|
| 220 |
+
font-size: 0.8rem;
|
| 221 |
+
font-weight: bold;
|
| 222 |
+
margin-left: 0.5rem;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
/* Conteneurs */
|
| 226 |
+
.glass-container {
|
| 227 |
+
background: rgba(255, 255, 255, 0.7);
|
| 228 |
+
backdrop-filter: blur(10px);
|
| 229 |
+
border-radius: 10px;
|
| 230 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
| 231 |
+
padding: 1.5rem;
|
| 232 |
+
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
/* Animations */
|
| 236 |
+
@keyframes fadeIn {
|
| 237 |
+
from { opacity: 0; }
|
| 238 |
+
to { opacity: 1; }
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
.fade-in {
|
| 242 |
+
animation: fadeIn 0.5s ease-in-out;
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
@keyframes slideInFromLeft {
|
| 246 |
+
0% {
|
| 247 |
+
transform: translateX(-30px);
|
| 248 |
+
opacity: 0;
|
| 249 |
+
}
|
| 250 |
+
100% {
|
| 251 |
+
transform: translateX(0);
|
| 252 |
+
opacity: 1;
|
| 253 |
+
}
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
.slide-in {
|
| 257 |
+
animation: slideInFromLeft 0.5s ease-out;
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
/* Mise en page de l'en-tête */
|
| 261 |
+
.header-content {
|
| 262 |
+
display: flex;
|
| 263 |
+
align-items: center;
|
| 264 |
+
margin-bottom: 1.5rem;
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
.description-container {
|
| 268 |
+
flex: 3;
|
| 269 |
+
padding-right: 1.5rem;
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
.image-container {
|
| 273 |
+
flex: 2;
|
| 274 |
+
display: flex;
|
| 275 |
+
justify-content: center;
|
| 276 |
+
align-items: center;
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
/* Responsive design */
|
| 280 |
+
@media (max-width: 768px) {
|
| 281 |
+
.main-title { font-size: 2rem !important; }
|
| 282 |
+
.sub-title { font-size: 1.5rem !important; }
|
| 283 |
+
.section-title { font-size: 1.2rem !important; }
|
| 284 |
+
.header-content { flex-direction: column; }
|
| 285 |
+
.description-container { padding-right: 0; padding-bottom: 1.5rem; }
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
/* Table des performances */
|
| 289 |
+
.styled-table {
|
| 290 |
+
width: 100%;
|
| 291 |
+
border-collapse: collapse;
|
| 292 |
+
margin: 1.5rem 0;
|
| 293 |
+
border-radius: 8px;
|
| 294 |
+
overflow: hidden;
|
| 295 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
.styled-table thead tr {
|
| 299 |
+
background-color: #1E3A8A;
|
| 300 |
+
color: white;
|
| 301 |
+
text-align: left;
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
.styled-table th,
|
| 305 |
+
.styled-table td {
|
| 306 |
+
padding: 12px 15px;
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
+
.styled-table tbody tr {
|
| 310 |
+
border-bottom: 1px solid #dddddd;
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
.styled-table tbody tr:nth-of-type(even) {
|
| 314 |
+
background-color: #f9fafb;
|
| 315 |
+
}
|
| 316 |
+
|
| 317 |
+
.styled-table tbody tr:last-of-type {
|
| 318 |
+
border-bottom: 2px solid #1E3A8A;
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
/* Masquer les éléments par défaut de Streamlit qu'on ne veut pas voir */
|
| 322 |
+
#MainMenu {visibility: hidden;}
|
| 323 |
+
footer {visibility: hidden;}
|
| 324 |
+
.viewerBadge_container__r5tak {display: none;}
|
| 325 |
+
</style>
|
| 326 |
+
""", unsafe_allow_html=True)
|
| 327 |
+
|
| 328 |
+
# Configuration des colonnes principales
|
| 329 |
+
header_col1, header_col2 = st.columns([2, 5])
|
| 330 |
+
|
| 331 |
+
# Logo et informations de base
|
| 332 |
+
with header_col1:
|
| 333 |
+
try:
|
| 334 |
+
st.image("logo_est_nador.png", width=200)
|
| 335 |
+
except:
|
| 336 |
+
st.markdown("<h3>EST Nador</h3>", unsafe_allow_html=True)
|
| 337 |
+
st.warning("Logo non trouvé. Placez 'logo_est_nador.png' dans le dossier du projet.")
|
| 338 |
+
|
| 339 |
+
st.markdown('<div class="slide-in">', unsafe_allow_html=True)
|
| 340 |
+
st.markdown("### Stage de Fin d'Études")
|
| 341 |
+
st.markdown("**Étudiant:** Mohammed MEDIANI")
|
| 342 |
+
st.markdown("**Filière:** IAID - EST Nador")
|
| 343 |
+
st.markdown("**Date:** Juin 2025")
|
| 344 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 345 |
+
|
| 346 |
+
st.markdown("---")
|
| 347 |
+
|
| 348 |
+
st.markdown('<div class="fade-in">', unsafe_allow_html=True)
|
| 349 |
+
st.markdown("### Encadrement")
|
| 350 |
+
st.markdown("- **Pr. ACHSAS SANAE** (Académique)")
|
| 351 |
+
st.markdown("- **Mme. Aya BENNANI** (Professionnelle)")
|
| 352 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 353 |
+
|
| 354 |
+
st.markdown("---")
|
| 355 |
+
|
| 356 |
+
st.markdown('<div class="fade-in">', unsafe_allow_html=True)
|
| 357 |
+
st.markdown("### Informations sur l'API")
|
| 358 |
+
st.markdown("**URL:** [mediani-darija-aicc-api.hf.space](https://mediani-darija-aicc-api.hf.space)")
|
| 359 |
+
st.markdown("**Documentation:** [API Docs](https://mediani-darija-aicc-api.hf.space/docs)")
|
| 360 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 361 |
+
|
| 362 |
+
# Titre principal et description
|
| 363 |
+
with header_col2:
|
| 364 |
+
st.markdown('<h1 class="main-title">API de NLU pour le Dialecte Marocain (Darija)</h1>', unsafe_allow_html=True)
|
| 365 |
+
|
| 366 |
+
# Description du projet - Style raffiné et concis pour équilibrer avec la grande animation
|
| 367 |
+
st.markdown("""
|
| 368 |
+
<div class="info-box fade-in" style="margin-bottom: 15px; padding: 1.2rem; border: 1px solid #E2E8F0;">
|
| 369 |
+
<p style="font-size: 16px; margin-bottom: 10px;">Ce projet vise à concevoir et déployer une <strong>API de compréhension du langage naturel (NLU)</strong> spécialisée pour la Darija marocaine. L'objectif est d'améliorer l'expérience client en permettant aux systèmes automatisés de comprendre les requêtes exprimées dans ce dialecte.</p>
|
| 370 |
+
<p style="font-size: 16px; margin-bottom: 10px;">L'API identifie 9 intentions différentes et s'intègre avec la plateforme AICC de Huawei pour le traitement des requêtes clients.</p>
|
| 371 |
+
<p style="font-size: 15px; color: #3B82F6; text-align: center;"><strong>✨ Cette démonstration interactive vous permet d'explorer les capacités de l'API en temps réel</strong></p>
|
| 372 |
+
</div>
|
| 373 |
+
""", unsafe_allow_html=True)
|
| 374 |
+
|
| 375 |
+
# Animation Lottie centrée sous le texte - Taille agrandie pour remplir l'espace vertical
|
| 376 |
+
st.markdown('<div style="display: flex; justify-content: center; align-items: center; margin-bottom: 20px; padding: 10px; background-color: rgba(240, 249, 255, 0.3); border-radius: 15px;">', unsafe_allow_html=True)
|
| 377 |
+
if lottie_ai:
|
| 378 |
+
st_lottie(lottie_ai, height=400, width=680, key="ai_animation", quality="high")
|
| 379 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 380 |
+
|
| 381 |
+
# Espace réduit car l'animation est plus grande et remplit déjà bien l'espace
|
| 382 |
+
st.markdown("<div style='height: 10px;'></div>", unsafe_allow_html=True)
|
| 383 |
+
|
| 384 |
+
# Onglets principaux avec icônes
|
| 385 |
+
tab1, tab2, tab3 = st.tabs(["🔍 Démonstration", "📊 Performances", "🏗️ Architecture"])
|
| 386 |
+
|
| 387 |
+
# Onglet Démonstration
|
| 388 |
+
with tab1:
|
| 389 |
+
st.markdown('<h2 class="sub-title slide-in">Testez l\'API en direct</h2>', unsafe_allow_html=True)
|
| 390 |
+
|
| 391 |
+
# Description du service
|
| 392 |
+
st.info("""
|
| 393 |
+
**Cette interface vous permet de tester en temps réel notre API de compréhension du langage naturel spécialisée pour la Darija marocaine.**
|
| 394 |
+
|
| 395 |
+
**Instructions:**
|
| 396 |
+
1. Entrez un texte en Darija ou sélectionnez un exemple prédéfini
|
| 397 |
+
2. Cliquez sur le bouton "Analyser l'intention"
|
| 398 |
+
3. Observez les résultats de la détection d'intention
|
| 399 |
+
|
| 400 |
+
L'API est optimisée pour comprendre la Darija dans ses différentes variantes et avec le code-switching (mélange avec le français).
|
| 401 |
+
""")
|
| 402 |
+
|
| 403 |
+
# Exemples prédéfinis
|
| 404 |
+
st.markdown('<h3 class="section-title">Exemples à tester</h3>', unsafe_allow_html=True)
|
| 405 |
+
|
| 406 |
+
# Organisation des exemples par catégories
|
| 407 |
+
with st.expander("🔄 Exemples par catégorie d'intention", expanded=True):
|
| 408 |
+
tab_expl1, tab_expl2, tab_expl3 = st.tabs(["Requêtes techniques", "Interactions", "Code-switching"])
|
| 409 |
+
|
| 410 |
+
with tab_expl1:
|
| 411 |
+
exemples_tech = {
|
| 412 |
+
"Consulter solde": "بغيت نعرف شحال باقي ليا في رصيدي",
|
| 413 |
+
"Déclarer panne": "ماكيخدمش عندي لانترنيت هاذي شي سيمانة",
|
| 414 |
+
"Réclamation facture": "فاكتورة هاد الشهر غالية بزاف، بغيت نشوف علاش",
|
| 415 |
+
"Info forfait": "شنو هوما لوفر ديال لانترنيت لي كاينين دابا",
|
| 416 |
+
"Récupérer mot de passe": "نسيت mon mot de passe ديالي واش يمكن تساعدني؟"
|
| 417 |
+
}
|
| 418 |
+
|
| 419 |
+
cols = st.columns(3)
|
| 420 |
+
for i, (label, exemple) in enumerate(exemples_tech.items()):
|
| 421 |
+
with cols[i % 3]:
|
| 422 |
+
if st.button(f"{label}", key=f"tech_btn_{i}", help=exemple):
|
| 423 |
+
st.session_state["user_input"] = exemple
|
| 424 |
+
st.rerun()
|
| 425 |
+
|
| 426 |
+
with tab_expl2:
|
| 427 |
+
exemples_inter = {
|
| 428 |
+
"Salutations": "salam 3lik bkhir",
|
| 429 |
+
"Remerciement": "شكرا بزاف على المساعدة ديالكم، كنتو مزيانين معايا",
|
| 430 |
+
"Demander agent": "Brit nhdar m3a service client ma bghitch robot",
|
| 431 |
+
"Hors scope": "واش كاين شي طريقة باش نلعب تينيس فهاد الويكاند؟"
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
cols = st.columns(2)
|
| 435 |
+
for i, (label, exemple) in enumerate(exemples_inter.items()):
|
| 436 |
+
with cols[i % 2]:
|
| 437 |
+
if st.button(f"{label}", key=f"inter_btn_{i}", help=exemple):
|
| 438 |
+
st.session_state["user_input"] = exemple
|
| 439 |
+
st.rerun()
|
| 440 |
+
|
| 441 |
+
with tab_expl3:
|
| 442 |
+
exemples_code = {
|
| 443 |
+
"Solde (code-switching)": "بغيت نعرف le solde ديالي شحال باقي",
|
| 444 |
+
"Panne (code-switching)": "عندي problème فالفاكتورة ديالي",
|
| 445 |
+
"Mot de passe (code-switching)": "نسيت mon mot de passe ديالي واش يمكن تساعدني؟",
|
| 446 |
+
"Salutations (code-switching)": "bonjour صاحبي، كيفاش يمكن لي نساعدك؟"
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
cols = st.columns(2)
|
| 450 |
+
for i, (label, exemple) in enumerate(exemples_code.items()):
|
| 451 |
+
with cols[i % 2]:
|
| 452 |
+
if st.button(f"{label}", key=f"code_btn_{i}", help=exemple):
|
| 453 |
+
st.session_state["user_input"] = exemple
|
| 454 |
+
st.rerun()
|
| 455 |
+
|
| 456 |
+
# Zone de texte pour l'entrée utilisateur
|
| 457 |
+
st.markdown('<h3 class="section-title">Votre requête</h3>', unsafe_allow_html=True)
|
| 458 |
+
|
| 459 |
+
if "user_input" not in st.session_state:
|
| 460 |
+
st.session_state["user_input"] = "بغيت نعرف شحال باقي ليا في رصيدي"
|
| 461 |
+
|
| 462 |
+
user_input = st.text_area("Entrez un texte en Darija:",
|
| 463 |
+
value=st.session_state["user_input"],
|
| 464 |
+
height=100,
|
| 465 |
+
key="input_area",
|
| 466 |
+
help="Vous pouvez entrer du texte en Darija pure ou mélangé avec du français")
|
| 467 |
+
|
| 468 |
+
# Bouton d'analyse avec animation de chargement
|
| 469 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
| 470 |
+
with col2:
|
| 471 |
+
analyze_btn = st.button("🔍 Analyser l'intention",
|
| 472 |
+
key="analyze_btn",
|
| 473 |
+
type="primary",
|
| 474 |
+
help="Cliquez pour analyser le texte")
|
| 475 |
+
|
| 476 |
+
# Analyser le texte si le bouton est cliqué
|
| 477 |
+
if analyze_btn:
|
| 478 |
+
with st.spinner("Analyse en cours..."):
|
| 479 |
+
# Afficher l'animation de traitement pendant l'appel à l'API
|
| 480 |
+
if lottie_process:
|
| 481 |
+
placeholder = st.empty()
|
| 482 |
+
with placeholder.container():
|
| 483 |
+
st_lottie(lottie_process, height=120, key="process_animation")
|
| 484 |
+
|
| 485 |
+
result, response_time = call_api(user_input)
|
| 486 |
+
|
| 487 |
+
# Supprimer l'animation une fois le résultat obtenu
|
| 488 |
+
if lottie_process:
|
| 489 |
+
placeholder.empty()
|
| 490 |
+
|
| 491 |
+
if result:
|
| 492 |
+
# Afficher les résultats dans un cadre
|
| 493 |
+
st.markdown("---")
|
| 494 |
+
st.markdown('<h3 class="section-title fade-in">Résultats de l\'analyse</h3>', unsafe_allow_html=True)
|
| 495 |
+
|
| 496 |
+
# Créer un conteneur de style "glass" pour les résultats
|
| 497 |
+
st.markdown('<div class="glass-container">', unsafe_allow_html=True)
|
| 498 |
+
|
| 499 |
+
# Créer deux colonnes pour les résultats
|
| 500 |
+
res_col1, res_col2 = st.columns([1, 1])
|
| 501 |
+
|
| 502 |
+
with res_col1:
|
| 503 |
+
# Icône et tag d'intention
|
| 504 |
+
intent_icon = get_intent_icon(result["intent"])
|
| 505 |
+
st.markdown(f'<div class="intent-tag" style="background-color: {get_intent_color(result["intent"])};">{intent_icon} {result["intent"]}</div>', unsafe_allow_html=True)
|
| 506 |
+
|
| 507 |
+
# Description de l'intention
|
| 508 |
+
st.markdown(f"**Description:** {get_intent_description(result['intent'])}")
|
| 509 |
+
|
| 510 |
+
# Temps de réponse avec badge coloré
|
| 511 |
+
speed_class = "success" if response_time < 200 else "warning" if response_time < 500 else "danger"
|
| 512 |
+
st.markdown(f"""
|
| 513 |
+
<div>
|
| 514 |
+
<span>⏱️ Temps de réponse:</span>
|
| 515 |
+
<span class="badge" style="background-color: {'#10B981' if speed_class == 'success' else '#F59E0B' if speed_class == 'warning' else '#EF4444'};">
|
| 516 |
+
{response_time:.2f} ms
|
| 517 |
+
</span>
|
| 518 |
+
</div>
|
| 519 |
+
""", unsafe_allow_html=True)
|
| 520 |
+
|
| 521 |
+
with res_col2:
|
| 522 |
+
# Utiliser Plotly pour un graphique interactif de confiance
|
| 523 |
+
fig = go.Figure()
|
| 524 |
+
|
| 525 |
+
# Ajouter la barre de fond
|
| 526 |
+
fig.add_trace(go.Bar(
|
| 527 |
+
x=[1],
|
| 528 |
+
y=['Confiance'],
|
| 529 |
+
orientation='h',
|
| 530 |
+
marker=dict(color='rgba(240, 240, 240, 0.5)'),
|
| 531 |
+
width=0.5,
|
| 532 |
+
hoverinfo='skip',
|
| 533 |
+
showlegend=False
|
| 534 |
+
))
|
| 535 |
+
|
| 536 |
+
# Ajouter la barre principale
|
| 537 |
+
fig.add_trace(go.Bar(
|
| 538 |
+
x=[result["confidence"]],
|
| 539 |
+
y=['Confiance'],
|
| 540 |
+
orientation='h',
|
| 541 |
+
marker=dict(color=get_intent_color(result["intent"])),
|
| 542 |
+
width=0.5,
|
| 543 |
+
hovertemplate=f'Confiance: {result["confidence"]*100:.1f}%<extra></extra>'
|
| 544 |
+
))
|
| 545 |
+
|
| 546 |
+
# Configuration de la mise en page
|
| 547 |
+
fig.update_layout(
|
| 548 |
+
title=f"Score: {result['confidence']*100:.1f}%",
|
| 549 |
+
height=150,
|
| 550 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
| 551 |
+
xaxis=dict(
|
| 552 |
+
range=[0, 1],
|
| 553 |
+
tickvals=[0, 0.25, 0.5, 0.75, 1],
|
| 554 |
+
ticktext=['0%', '25%', '50%', '75%', '100%'],
|
| 555 |
+
gridcolor='rgba(0, 0, 0, 0.1)'
|
| 556 |
+
),
|
| 557 |
+
barmode='overlay',
|
| 558 |
+
bargap=0.1,
|
| 559 |
+
showlegend=False
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 563 |
+
|
| 564 |
+
# Fermer le conteneur en verre
|
| 565 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 566 |
+
|
| 567 |
+
# Explication technique
|
| 568 |
+
with st.expander("🔬 Explication technique", expanded=False):
|
| 569 |
+
st.markdown("""
|
| 570 |
+
Le texte passe par plusieurs étapes de traitement dans notre API:
|
| 571 |
+
|
| 572 |
+
1. **Prétraitement**:
|
| 573 |
+
- Normalisation du texte arabe (alif, yaa, etc.)
|
| 574 |
+
- Gestion spéciale des caractères non-arabes
|
| 575 |
+
- Traitement du code-switching Darija-Français
|
| 576 |
+
|
| 577 |
+
2. **Tokenisation**:
|
| 578 |
+
- Conversion en tokens avec le tokenizer de MARBERTv2
|
| 579 |
+
- Support des tokens spéciaux pour la Darija
|
| 580 |
+
|
| 581 |
+
3. **Inférence**:
|
| 582 |
+
- Passage dans le modèle fine-tuné sur notre corpus personnalisé
|
| 583 |
+
- Application d'une couche linéaire de classification
|
| 584 |
+
|
| 585 |
+
4. **Post-traitement**:
|
| 586 |
+
- Détermination de l'intention la plus probable
|
| 587 |
+
- Calcul du score de confiance via softmax
|
| 588 |
+
|
| 589 |
+
Le système utilise un modèle de type Transformer spécifiquement optimisé pour la Darija marocaine et ses spécificités dialectales.
|
| 590 |
+
""")
|
| 591 |
+
|
| 592 |
+
# Afficher le payload JSON avec coloration syntaxique
|
| 593 |
+
st.markdown("#### Requête et réponse JSON:")
|
| 594 |
+
col1, col2 = st.columns(2)
|
| 595 |
+
with col1:
|
| 596 |
+
st.code(json.dumps({"text": user_input}, indent=2, ensure_ascii=False), language="json")
|
| 597 |
+
with col2:
|
| 598 |
+
st.code(json.dumps(result, indent=2, ensure_ascii=False), language="json")
|
| 599 |
+
|
| 600 |
+
# Exemples similaires
|
| 601 |
+
with st.expander("📚 Exemples similaires", expanded=False):
|
| 602 |
+
st.markdown(f"### Autres exemples pour l'intention: {result['intent']}")
|
| 603 |
+
|
| 604 |
+
# Dictionnaire d'exemples par intention
|
| 605 |
+
exemples_par_intention = {
|
| 606 |
+
"consulter_solde": [
|
| 607 |
+
"شحال عندي في لكارط ديالي؟",
|
| 608 |
+
"بقا ليا شحال في الكريدي؟",
|
| 609 |
+
"واش ممكن تشوف ليا رصيدي؟",
|
| 610 |
+
"فين يمكن لي نراقب الكريدي ديالي؟",
|
| 611 |
+
"بغيت نعرف le solde ديالي شحال باقي"
|
| 612 |
+
],
|
| 613 |
+
"reclamer_facture": [
|
| 614 |
+
"عندي مشكل في الفاكتورة",
|
| 615 |
+
"الفاتورة ديال هاد الشهر مضاعفة على الشهر لي فات!",
|
| 616 |
+
"كينقصوني فلوس بزاف ف الفاكتورة",
|
| 617 |
+
"مكنستهلكش هاد القدر ديال الميكا، كاين خطأ",
|
| 618 |
+
"عندي problème فالفاكتورة ديالي"
|
| 619 |
+
],
|
| 620 |
+
"declarer_panne": [
|
| 621 |
+
"ماكيخدمش عندي لانترنيت هاذي شي سيمانة",
|
| 622 |
+
"التيليفون ما كيشارجيش، عيطو ليا بسرعة",
|
| 623 |
+
"عندي بروبليم فلانترنيت ديالي، كيقطع بزاف",
|
| 624 |
+
"ماكيدوزش عندي لابيل ديال التيليفزيون",
|
| 625 |
+
"j'ai un problème تقطع عليا الضو ديال مودام الويفي"
|
| 626 |
+
],
|
| 627 |
+
"info_forfait": [
|
| 628 |
+
"بغيت نبدل الفورفيه ديالي لشي وحدة أحسن",
|
| 629 |
+
"واش كاين شي فورفي ديال سوشيال ميديا؟",
|
| 630 |
+
"بغيت نخلص باش نزيد ف لانترنت ديالي",
|
| 631 |
+
"أشنو هو أحسن فورفيه عندكم؟",
|
| 632 |
+
"je cherche un forfait مزيان للانترنت"
|
| 633 |
+
],
|
| 634 |
+
"recuperer_mot_de_passe": [
|
| 635 |
+
"نسيت mon mot de passe ديالي واش يمكن تساعدني؟",
|
| 636 |
+
"كيفاش نقدر نسترجع كلمة السر؟",
|
| 637 |
+
"نسيت الكود ديالي ديال الكونيكسيون",
|
| 638 |
+
"بغيت نبدل لو دو باس ديالي",
|
| 639 |
+
"j'ai oublié لو دو باس ديال l'application"
|
| 640 |
+
],
|
| 641 |
+
"salutations": [
|
| 642 |
+
"صباح الخير، كيفاش يمكن لي نتواصل معاكم؟",
|
| 643 |
+
"السلام عليكم، بغيت نسولكم واحد السؤال",
|
| 644 |
+
"مرحبا، شكون لي كيهضر؟",
|
| 645 |
+
"آلو، واش نتا روبوت ولا بنادم حقيقي؟",
|
| 646 |
+
"bonjour صاحبي، كيفاش يمكن لي نساعدك؟"
|
| 647 |
+
],
|
| 648 |
+
"remerciements": [
|
| 649 |
+
"شكرا بزاف على المساعدة ديالكم",
|
| 650 |
+
"باراكا لاهو فيك، راك عاونتيني بزاف",
|
| 651 |
+
"ميرسي بزاف، ربي يجازيك بخير",
|
| 652 |
+
"متشكر على الوقت ديالك",
|
| 653 |
+
"merci بزاف على المساعدة ديالك"
|
| 654 |
+
],
|
| 655 |
+
"demander_agent_humain": [
|
| 656 |
+
"بغيت نتكلم مع شي واحد حقيقي ماشي روبو",
|
| 657 |
+
"واش ممكن تعاوني نهضر مع شي كونسيي؟",
|
| 658 |
+
"بغيت شي واحد يتواصل معايا هاتفيا",
|
| 659 |
+
"هادشي ماشي هو هداك لي كنبغي، خاصني بنادم نهضر معاه",
|
| 660 |
+
"je veux parler à un conseiller حقيقي"
|
| 661 |
+
],
|
| 662 |
+
"hors_scope": [
|
| 663 |
+
"واش كاين شي طريقة باش نلعب تينيس فهاد الويكاند؟",
|
| 664 |
+
"كيفاش طقس غدا فالرباط؟",
|
| 665 |
+
"شنو الأفلام الجديدة فالسينما؟",
|
| 666 |
+
"فين نقدر نلقى دواء بارسيتامول فالحي ديالي؟",
|
| 667 |
+
"je cherche un restaurant قريب من هنا"
|
| 668 |
+
]
|
| 669 |
+
}
|
| 670 |
+
|
| 671 |
+
# Afficher les exemples pour l'intention détectée
|
| 672 |
+
if result["intent"] in exemples_par_intention:
|
| 673 |
+
examples = exemples_par_intention[result["intent"]]
|
| 674 |
+
for ex in examples:
|
| 675 |
+
st.markdown(f"- `{ex}`")
|
| 676 |
+
|
| 677 |
+
# Bouton pour tester un exemple aléatoire
|
| 678 |
+
if st.button("🎲 Tester un exemple aléatoire", key="random_example"):
|
| 679 |
+
st.session_state["user_input"] = random.choice(examples)
|
| 680 |
+
st.rerun()
|
| 681 |
+
else:
|
| 682 |
+
st.write("Pas d'exemples disponibles pour cette intention.")
|
| 683 |
+
|
| 684 |
+
# Onglet Performances
|
| 685 |
+
with tab2:
|
| 686 |
+
st.markdown('<h2 class="sub-title slide-in">Performance du modèle</h2>', unsafe_allow_html=True)
|
| 687 |
+
|
| 688 |
+
# Description des performances
|
| 689 |
+
st.info("""
|
| 690 |
+
**Cette section présente les performances du modèle MARBERTv2 fine-tuné sur notre corpus de Darija.**
|
| 691 |
+
Les métriques ont été calculées sur un ensemble de test représentatif contenant 1 192 exemples issus de conversations réelles.
|
| 692 |
+
|
| 693 |
+
Notre approche est basée sur un modèle de type Transformer pré-entraîné sur l'arabe (MARBERTv2) et spécifiquement adapté aux particularités dialectales de la Darija marocaine.
|
| 694 |
+
""")
|
| 695 |
+
|
| 696 |
+
# Métriques globales
|
| 697 |
+
st.markdown('<h3 class="section-title">Métriques globales</h3>', unsafe_allow_html=True)
|
| 698 |
+
|
| 699 |
+
# Créer des colonnes pour les métriques avec des indicateurs visuels
|
| 700 |
+
metric_cols = st.columns(4)
|
| 701 |
+
|
| 702 |
+
# Créer des graphiques Gauge pour chaque métrique
|
| 703 |
+
with metric_cols[0]:
|
| 704 |
+
fig = go.Figure(go.Indicator(
|
| 705 |
+
mode = "gauge+number",
|
| 706 |
+
value = 92.8,
|
| 707 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 708 |
+
title = {'text': "Accuracy", 'font': {'size': 24}},
|
| 709 |
+
gauge = {
|
| 710 |
+
'axis': {'range': [None, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
|
| 711 |
+
'bar': {'color': "#1E3A8A"},
|
| 712 |
+
'bgcolor': "white",
|
| 713 |
+
'borderwidth': 2,
|
| 714 |
+
'bordercolor': "gray",
|
| 715 |
+
'steps': [
|
| 716 |
+
{'range': [0, 70], 'color': '#FFEDD5'},
|
| 717 |
+
{'range': [70, 85], 'color': '#FEF3C7'},
|
| 718 |
+
{'range': [85, 100], 'color': '#ECFDF5'}],
|
| 719 |
+
}
|
| 720 |
+
))
|
| 721 |
+
|
| 722 |
+
fig.update_layout(height=200, margin=dict(l=20, r=20, t=50, b=20))
|
| 723 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 724 |
+
|
| 725 |
+
with metric_cols[1]:
|
| 726 |
+
fig = go.Figure(go.Indicator(
|
| 727 |
+
mode = "gauge+number",
|
| 728 |
+
value = 93.1,
|
| 729 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 730 |
+
title = {'text': "Precision", 'font': {'size': 24}},
|
| 731 |
+
gauge = {
|
| 732 |
+
'axis': {'range': [None, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
|
| 733 |
+
'bar': {'color': "#1E40AF"},
|
| 734 |
+
'bgcolor': "white",
|
| 735 |
+
'borderwidth': 2,
|
| 736 |
+
'bordercolor': "gray",
|
| 737 |
+
'steps': [
|
| 738 |
+
{'range': [0, 70], 'color': '#FFEDD5'},
|
| 739 |
+
{'range': [70, 85], 'color': '#FEF3C7'},
|
| 740 |
+
{'range': [85, 100], 'color': '#ECFDF5'}],
|
| 741 |
+
}
|
| 742 |
+
))
|
| 743 |
+
|
| 744 |
+
fig.update_layout(height=200, margin=dict(l=20, r=20, t=50, b=20))
|
| 745 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 746 |
+
|
| 747 |
+
with metric_cols[2]:
|
| 748 |
+
fig = go.Figure(go.Indicator(
|
| 749 |
+
mode = "gauge+number",
|
| 750 |
+
value = 92.8,
|
| 751 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 752 |
+
title = {'text': "Recall", 'font': {'size': 24}},
|
| 753 |
+
gauge = {
|
| 754 |
+
'axis': {'range': [None, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
|
| 755 |
+
'bar': {'color': "#2563EB"},
|
| 756 |
+
'bgcolor': "white",
|
| 757 |
+
'borderwidth': 2,
|
| 758 |
+
'bordercolor': "gray",
|
| 759 |
+
'steps': [
|
| 760 |
+
{'range': [0, 70], 'color': '#FFEDD5'},
|
| 761 |
+
{'range': [70, 85], 'color': '#FEF3C7'},
|
| 762 |
+
{'range': [85, 100], 'color': '#ECFDF5'}],
|
| 763 |
+
}
|
| 764 |
+
))
|
| 765 |
+
|
| 766 |
+
fig.update_layout(height=200, margin=dict(l=20, r=20, t=50, b=20))
|
| 767 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 768 |
+
|
| 769 |
+
with metric_cols[3]:
|
| 770 |
+
fig = go.Figure(go.Indicator(
|
| 771 |
+
mode = "gauge+number",
|
| 772 |
+
value = 92.9,
|
| 773 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 774 |
+
title = {'text': "F1-Score", 'font': {'size': 24}},
|
| 775 |
+
gauge = {
|
| 776 |
+
'axis': {'range': [None, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
|
| 777 |
+
'bar': {'color': "#3B82F6"},
|
| 778 |
+
'bgcolor': "white",
|
| 779 |
+
'borderwidth': 2,
|
| 780 |
+
'bordercolor': "gray",
|
| 781 |
+
'steps': [
|
| 782 |
+
{'range': [0, 70], 'color': '#FFEDD5'},
|
| 783 |
+
{'range': [70, 85], 'color': '#FEF3C7'},
|
| 784 |
+
{'range': [85, 100], 'color': '#ECFDF5'}],
|
| 785 |
+
}
|
| 786 |
+
))
|
| 787 |
+
|
| 788 |
+
fig.update_layout(height=200, margin=dict(l=20, r=20, t=50, b=20))
|
| 789 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 790 |
+
|
| 791 |
+
# Matrice de confusion
|
| 792 |
+
st.markdown('<h3 class="section-title">Matrice de confusion</h3>', unsafe_allow_html=True)
|
| 793 |
+
|
| 794 |
+
# Créer les onglets pour choisir le type de visualisation
|
| 795 |
+
matrix_tab1, matrix_tab2 = st.tabs(["Heatmap interactive", "Image statique"])
|
| 796 |
+
|
| 797 |
+
with matrix_tab1:
|
| 798 |
+
# Créer une matrice de confusion fictive (similaire à celle montrée dans le rapport)
|
| 799 |
+
intent_labels = [
|
| 800 |
+
"consulter_solde", "reclamer_facture", "declarer_panne",
|
| 801 |
+
"info_forfait", "recuperer_mot_de_passe", "salutations",
|
| 802 |
+
"remerciements", "demander_agent_humain", "hors_scope"
|
| 803 |
+
]
|
| 804 |
+
|
| 805 |
+
# Matrice fictive (similaire à celle montrée dans le rapport)
|
| 806 |
+
conf_matrix = np.array([
|
| 807 |
+
[184, 0, 0, 3, 0, 0, 0, 0, 8],
|
| 808 |
+
[1, 130, 0, 2, 0, 0, 0, 2, 3],
|
| 809 |
+
[0, 2, 118, 0, 0, 0, 0, 6, 5],
|
| 810 |
+
[2, 3, 0, 121, 0, 0, 0, 0, 2],
|
| 811 |
+
[0, 0, 0, 0, 121, 0, 0, 2, 2],
|
| 812 |
+
[1, 0, 0, 0, 0, 109, 5, 0, 7],
|
| 813 |
+
[0, 0, 0, 0, 0, 3, 133, 0, 0],
|
| 814 |
+
[0, 0, 7, 0, 3, 0, 0, 111, 4],
|
| 815 |
+
[4, 2, 4, 0, 2, 9, 0, 5, 107]
|
| 816 |
+
])
|
| 817 |
+
|
| 818 |
+
# Créer un DataFrame pour Plotly
|
| 819 |
+
matrix_data = []
|
| 820 |
+
for i in range(len(intent_labels)):
|
| 821 |
+
for j in range(len(intent_labels)):
|
| 822 |
+
matrix_data.append({
|
| 823 |
+
'Réelle': intent_labels[i],
|
| 824 |
+
'Prédite': intent_labels[j],
|
| 825 |
+
'Valeur': conf_matrix[i, j]
|
| 826 |
+
})
|
| 827 |
+
|
| 828 |
+
df_conf = pd.DataFrame(matrix_data)
|
| 829 |
+
|
| 830 |
+
# Créer la heatmap avec Plotly
|
| 831 |
+
fig = px.density_heatmap(
|
| 832 |
+
df_conf,
|
| 833 |
+
x='Prédite',
|
| 834 |
+
y='Réelle',
|
| 835 |
+
z='Valeur',
|
| 836 |
+
color_continuous_scale='Blues',
|
| 837 |
+
text_auto=True
|
| 838 |
+
)
|
| 839 |
+
|
| 840 |
+
fig.update_layout(
|
| 841 |
+
title='Matrice de Confusion Interactive',
|
| 842 |
+
width=800,
|
| 843 |
+
height=600,
|
| 844 |
+
xaxis_title='Intention Prédite',
|
| 845 |
+
yaxis_title='Intention Réelle'
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 849 |
+
|
| 850 |
+
with matrix_tab2:
|
| 851 |
+
try:
|
| 852 |
+
confusion_img = Image.open("images/image8.jpg")
|
| 853 |
+
st.image(confusion_img, caption="Matrice de Confusion pour la Classification d'Intents en Darija")
|
| 854 |
+
except:
|
| 855 |
+
st.warning("Image de matrice de confusion non trouvée. Placez 'image8.jpg' dans le dossier 'images/'.")
|
| 856 |
+
|
| 857 |
+
# Créer une heatmap avec Matplotlib
|
| 858 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 859 |
+
im = ax.imshow(conf_matrix, cmap='Blues')
|
| 860 |
+
|
| 861 |
+
# Étiquettes des axes
|
| 862 |
+
ax.set_xticks(np.arange(len(intent_labels)))
|
| 863 |
+
ax.set_yticks(np.arange(len(intent_labels)))
|
| 864 |
+
ax.set_xticklabels(intent_labels, rotation=45, ha="right")
|
| 865 |
+
ax.set_yticklabels(intent_labels)
|
| 866 |
+
|
| 867 |
+
# Ajout des valeurs dans les cellules
|
| 868 |
+
for i in range(len(intent_labels)):
|
| 869 |
+
for j in range(len(intent_labels)):
|
| 870 |
+
text = ax.text(j, i, conf_matrix[i, j],
|
| 871 |
+
ha="center", va="center", color="black" if conf_matrix[i, j] < 100 else "white")
|
| 872 |
+
|
| 873 |
+
ax.set_xlabel('Intention prédite')
|
| 874 |
+
ax.set_ylabel('Intention réelle')
|
| 875 |
+
ax.set_title('Matrice de Confusion')
|
| 876 |
+
fig.tight_layout()
|
| 877 |
+
|
| 878 |
+
st.pyplot(fig)
|
| 879 |
+
|
| 880 |
+
# Performance par intention
|
| 881 |
+
st.markdown('<h3 class="section-title">Performance par intention</h3>', unsafe_allow_html=True)
|
| 882 |
+
|
| 883 |
+
perf_tab1, perf_tab2 = st.tabs(["Graphique interactif", "Image statique"])
|
| 884 |
+
|
| 885 |
+
with perf_tab1:
|
| 886 |
+
# Créer un graphique interactif avec Plotly
|
| 887 |
+
intents = [
|
| 888 |
+
"consulter_solde", "reclamer_facture", "declarer_panne",
|
| 889 |
+
"info_forfait", "recuperer_mot_de_passe", "salutations",
|
| 890 |
+
"remerciements", "demander_agent_humain", "hors_scope"
|
| 891 |
+
]
|
| 892 |
+
|
| 893 |
+
# Données (similaires à celles du rapport)
|
| 894 |
+
precision = [0.981, 0.949, 0.907, 0.887, 0.947, 0.906, 0.964, 0.867, 0.847]
|
| 895 |
+
recall = [0.943, 0.944, 0.904, 0.945, 0.967, 0.890, 0.978, 0.931, 0.807]
|
| 896 |
+
f1 = [0.962, 0.946, 0.905, 0.915, 0.957, 0.898, 0.971, 0.898, 0.827]
|
| 897 |
+
|
| 898 |
+
# Créer un DataFrame pour Plotly
|
| 899 |
+
df_perf = pd.DataFrame({
|
| 900 |
+
'Intention': intents * 3,
|
| 901 |
+
'Métrique': ['Précision'] * len(intents) + ['Rappel'] * len(intents) + ['F1-Score'] * len(intents),
|
| 902 |
+
'Valeur': precision + recall + f1
|
| 903 |
+
})
|
| 904 |
+
|
| 905 |
+
# Créer le graphique avec Plotly
|
| 906 |
+
fig = px.bar(
|
| 907 |
+
df_perf,
|
| 908 |
+
x='Intention',
|
| 909 |
+
y='Valeur',
|
| 910 |
+
color='Métrique',
|
| 911 |
+
barmode='group',
|
| 912 |
+
color_discrete_map={
|
| 913 |
+
'Précision': '#1f77b4',
|
| 914 |
+
'Rappel': '#ff7f0e',
|
| 915 |
+
'F1-Score': '#2ca02c'
|
| 916 |
+
},
|
| 917 |
+
hover_data={'Intention': True, 'Métrique': True, 'Valeur': ':.3f'},
|
| 918 |
+
title='Performance par intention'
|
| 919 |
+
)
|
| 920 |
+
|
| 921 |
+
fig.update_layout(
|
| 922 |
+
yaxis=dict(
|
| 923 |
+
title='Score',
|
| 924 |
+
range=[0.7, 1]
|
| 925 |
+
),
|
| 926 |
+
xaxis_title='',
|
| 927 |
+
legend_title='Métrique',
|
| 928 |
+
height=500
|
| 929 |
+
)
|
| 930 |
+
|
| 931 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 932 |
+
|
| 933 |
+
with perf_tab2:
|
| 934 |
+
try:
|
| 935 |
+
perf_img = Image.open("images/image11.jpg")
|
| 936 |
+
st.image(perf_img, caption="Performance du Modèle par Intent (Précision, Rappel, F1-Score)")
|
| 937 |
+
except:
|
| 938 |
+
st.warning("Image de performance par intent non trouvée. Placez 'image11.jpg' dans le dossier 'images/'.")
|
| 939 |
+
|
| 940 |
+
# Créer un graphique avec Matplotlib
|
| 941 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 942 |
+
|
| 943 |
+
x = np.arange(len(intents))
|
| 944 |
+
width = 0.25
|
| 945 |
+
|
| 946 |
+
ax.bar(x - width, precision, width, label='Précision', color='#1f77b4')
|
| 947 |
+
ax.bar(x, recall, width, label='Rappel', color='#ff7f0e')
|
| 948 |
+
ax.bar(x + width, f1, width, label='F1-Score', color='#2ca02c')
|
| 949 |
+
|
| 950 |
+
ax.set_ylabel('Score')
|
| 951 |
+
ax.set_title('Performance par intention')
|
| 952 |
+
ax.set_xticks(x)
|
| 953 |
+
ax.set_xticklabels(intents, rotation=45, ha='right')
|
| 954 |
+
ax.legend()
|
| 955 |
+
ax.set_ylim([0.7, 1])
|
| 956 |
+
|
| 957 |
+
fig.tight_layout()
|
| 958 |
+
|
| 959 |
+
st.pyplot(fig)
|
| 960 |
+
|
| 961 |
+
# Évolution de l'entraînement
|
| 962 |
+
st.markdown('<h3 class="section-title">Évolution de l\'entraînement</h3>', unsafe_allow_html=True)
|
| 963 |
+
|
| 964 |
+
train_tab1, train_tab2 = st.tabs(["Graphique interactif", "Image statique"])
|
| 965 |
+
|
| 966 |
+
with train_tab1:
|
| 967 |
+
# Créer un graphique interactif avec Plotly
|
| 968 |
+
steps = list(range(0, 1001, 50))
|
| 969 |
+
train_loss = [4.5] + [4.5 * np.exp(-0.005 * step) + 0.3 + 0.1 * np.random.random() for step in steps[1:]]
|
| 970 |
+
val_loss = [4.2] + [4.2 * np.exp(-0.005 * step) + 0.35 + 0.15 * np.random.random() for step in steps[1:]]
|
| 971 |
+
|
| 972 |
+
# Créer un DataFrame
|
| 973 |
+
df_loss = pd.DataFrame({
|
| 974 |
+
'Step': steps,
|
| 975 |
+
'Train Loss': train_loss,
|
| 976 |
+
'Val Loss': val_loss
|
| 977 |
+
})
|
| 978 |
+
|
| 979 |
+
# Convertir en format long pour Plotly
|
| 980 |
+
df_loss_long = pd.melt(
|
| 981 |
+
df_loss,
|
| 982 |
+
id_vars=['Step'],
|
| 983 |
+
value_vars=['Train Loss', 'Val Loss'],
|
| 984 |
+
var_name='Type',
|
| 985 |
+
value_name='Loss'
|
| 986 |
+
)
|
| 987 |
+
|
| 988 |
+
# Créer le graphique avec Plotly
|
| 989 |
+
fig = px.line(
|
| 990 |
+
df_loss_long,
|
| 991 |
+
x='Step',
|
| 992 |
+
y='Loss',
|
| 993 |
+
color='Type',
|
| 994 |
+
title='Évolution de la perte durant l\'entraînement',
|
| 995 |
+
color_discrete_map={
|
| 996 |
+
'Train Loss': 'blue',
|
| 997 |
+
'Val Loss': 'orange'
|
| 998 |
+
}
|
| 999 |
+
)
|
| 1000 |
+
|
| 1001 |
+
fig.update_layout(
|
| 1002 |
+
xaxis_title='Étapes',
|
| 1003 |
+
yaxis_title='Perte (Loss)',
|
| 1004 |
+
height=400
|
| 1005 |
+
)
|
| 1006 |
+
|
| 1007 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 1008 |
+
|
| 1009 |
+
with train_tab2:
|
| 1010 |
+
try:
|
| 1011 |
+
training_img = Image.open("images/image5.jpg")
|
| 1012 |
+
st.image(training_img, caption="Évolution de la Perte (Loss) durant l'Entraînement")
|
| 1013 |
+
except:
|
| 1014 |
+
st.warning("Image d'évolution de l'entraînement non trouvée. Placez 'image5.jpg' dans le dossier 'images/'.")
|
| 1015 |
+
|
| 1016 |
+
# Créer un graphique avec Matplotlib
|
| 1017 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 1018 |
+
|
| 1019 |
+
ax.plot(steps, train_loss, label='Train Loss', color='blue')
|
| 1020 |
+
ax.plot(steps, val_loss, label='Val Loss', color='orange')
|
| 1021 |
+
|
| 1022 |
+
ax.set_xlabel('Étapes')
|
| 1023 |
+
ax.set_ylabel('Perte (Loss)')
|
| 1024 |
+
ax.set_title('Évolution de la perte durant l\'entraînement')
|
| 1025 |
+
ax.legend()
|
| 1026 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 1027 |
+
|
| 1028 |
+
fig.tight_layout()
|
| 1029 |
+
|
| 1030 |
+
st.pyplot(fig)
|
| 1031 |
+
|
| 1032 |
+
# Benchmarks et comparaisons
|
| 1033 |
+
st.markdown('<h3 class="section-title">Benchmarks et comparaisons</h3>', unsafe_allow_html=True)
|
| 1034 |
+
|
| 1035 |
+
st.markdown("""
|
| 1036 |
+
<table class="styled-table">
|
| 1037 |
+
<thead>
|
| 1038 |
+
<tr>
|
| 1039 |
+
<th>Modèle</th>
|
| 1040 |
+
<th>Accuracy</th>
|
| 1041 |
+
<th>F1-Score</th>
|
| 1042 |
+
<th>Temps de réponse</th>
|
| 1043 |
+
<th>Taille</th>
|
| 1044 |
+
</tr>
|
| 1045 |
+
</thead>
|
| 1046 |
+
<tbody>
|
| 1047 |
+
<tr>
|
| 1048 |
+
<td><strong>MARBERTv2 (notre approche)</strong></td>
|
| 1049 |
+
<td>92.8%</td>
|
| 1050 |
+
<td>92.9%</td>
|
| 1051 |
+
<td>127ms</td>
|
| 1052 |
+
<td>470MB</td>
|
| 1053 |
+
</tr>
|
| 1054 |
+
<tr>
|
| 1055 |
+
<td>AraBERT</td>
|
| 1056 |
+
<td>89.3%</td>
|
| 1057 |
+
<td>89.1%</td>
|
| 1058 |
+
<td>132ms</td>
|
| 1059 |
+
<td>543MB</td>
|
| 1060 |
+
</tr>
|
| 1061 |
+
<tr>
|
| 1062 |
+
<td>QARiB</td>
|
| 1063 |
+
<td>87.5%</td>
|
| 1064 |
+
<td>87.2%</td>
|
| 1065 |
+
<td>145ms</td>
|
| 1066 |
+
<td>420MB</td>
|
| 1067 |
+
</tr>
|
| 1068 |
+
<tr>
|
| 1069 |
+
<td>BERT Multilingue</td>
|
| 1070 |
+
<td>85.1%</td>
|
| 1071 |
+
<td>84.9%</td>
|
| 1072 |
+
<td>121ms</td>
|
| 1073 |
+
<td>680MB</td>
|
| 1074 |
+
</tr>
|
| 1075 |
+
<tr>
|
| 1076 |
+
<td>SVM + TF-IDF</td>
|
| 1077 |
+
<td>78.6%</td>
|
| 1078 |
+
<td>77.9%</td>
|
| 1079 |
+
<td>65ms</td>
|
| 1080 |
+
<td>25MB</td>
|
| 1081 |
+
</tr>
|
| 1082 |
+
</tbody>
|
| 1083 |
+
</table>
|
| 1084 |
+
""", unsafe_allow_html=True)
|
| 1085 |
+
|
| 1086 |
+
st.markdown("""
|
| 1087 |
+
<div class="info-box" style="background-color: #F8FAFC; border: 2px solid #E2E8F0; color: #1A202C; font-size: 16px; line-height: 1.6;">
|
| 1088 |
+
<p style="margin-bottom: 15px; font-weight: 500;">Notre approche basée sur <strong style="color: #1E3A8A; font-weight: 700;">MARBERTv2</strong> surpasse significativement les autres modèles, en particulier pour les intentions liées aux spécificités dialectales de la Darija et au code-switching.</p>
|
| 1089 |
+
|
| 1090 |
+
<p style="margin-bottom: 10px; font-weight: 600; color: #2D3748;">Les avantages de notre approche:</p>
|
| 1091 |
+
<ul style="margin-left: 20px; color: #4A5568;">
|
| 1092 |
+
<li style="margin-bottom: 8px; font-weight: 500;">Meilleure gestion des variations dialectales régionales</li>
|
| 1093 |
+
<li style="margin-bottom: 8px; font-weight: 500;">Support du code-switching entre Darija et Français</li>
|
| 1094 |
+
<li style="margin-bottom: 8px; font-weight: 500;">Bonne performance sur les expressions idiomatiques spécifiques</li>
|
| 1095 |
+
<li style="margin-bottom: 8px; font-weight: 500;">Équilibre optimal entre performance et temps de réponse</li>
|
| 1096 |
+
</ul>
|
| 1097 |
+
</div>
|
| 1098 |
+
""", unsafe_allow_html=True)
|
| 1099 |
+
|
| 1100 |
+
# Onglet Architecture
|
| 1101 |
+
with tab3:
|
| 1102 |
+
st.markdown('<h2 class="sub-title slide-in">Architecture de la solution</h2>', unsafe_allow_html=True)
|
| 1103 |
+
|
| 1104 |
+
# Description de l'architecture
|
| 1105 |
+
st.info("""
|
| 1106 |
+
**Cette section présente l'architecture technique de notre solution et son intégration avec la plateforme AICC.**
|
| 1107 |
+
|
| 1108 |
+
Notre système est conçu comme une API RESTful déployée sur Hugging Face Spaces, permettant une intégration flexible avec différentes plateformes de service client, dont la solution AICC de Huawei.
|
| 1109 |
+
""")
|
| 1110 |
+
|
| 1111 |
+
# Architecture globale
|
| 1112 |
+
st.markdown('<h3 class="section-title">Architecture globale</h3>', unsafe_allow_html=True)
|
| 1113 |
+
|
| 1114 |
+
arch_tab1, arch_tab2 = st.tabs(["Diagramme interactif", "Image statique"])
|
| 1115 |
+
|
| 1116 |
+
with arch_tab1:
|
| 1117 |
+
# Créer un diagramme d'architecture professionnel avec Plotly
|
| 1118 |
+
fig = go.Figure()
|
| 1119 |
+
|
| 1120 |
+
# Définir une palette de couleurs professionnelle (dégradé de bleus)
|
| 1121 |
+
colors = {
|
| 1122 |
+
"Client": "#1E40AF", # Bleu foncé
|
| 1123 |
+
"AICC": "#2563EB", # Bleu royal
|
| 1124 |
+
"API Darija NLU": "#3B82F6", # Bleu moyen
|
| 1125 |
+
"MARBERTv2": "#60A5FA", # Bleu clair
|
| 1126 |
+
"Agents": "#1D4ED8", # Bleu profond
|
| 1127 |
+
"Call Center": "#1E3A8A" # Bleu très foncé
|
| 1128 |
+
}
|
| 1129 |
+
|
| 1130 |
+
# Repositionner les nœuds pour une meilleure présentation
|
| 1131 |
+
nodes = [
|
| 1132 |
+
{"name": "Client", "x": 0, "y": 0, "size": 80, "icon": "👤"},
|
| 1133 |
+
{"name": "AICC\nPlateforme", "x": 2, "y": 0, "size": 90, "icon": "🏢"},
|
| 1134 |
+
{"name": "API Darija\nNLU", "x": 4, "y": 0, "size": 85, "icon": "🔗"},
|
| 1135 |
+
{"name": "MARBERTv2\nModèle", "x": 6, "y": 0, "size": 75, "icon": "🧠"},
|
| 1136 |
+
{"name": "Agents\nHumains", "x": 2, "y": -1.5, "size": 70, "icon": "👨💼"},
|
| 1137 |
+
{"name": "Call Center\nSupport", "x": 3, "y": -2.5, "size": 65, "icon": "📞"}
|
| 1138 |
+
]
|
| 1139 |
+
|
| 1140 |
+
# Ajouter les nœuds avec des styles améliorés
|
| 1141 |
+
for i, node in enumerate(nodes):
|
| 1142 |
+
# Simplifier la logique de couleur
|
| 1143 |
+
node_name = node["name"].replace("\n", " ")
|
| 1144 |
+
if "Client" in node_name:
|
| 1145 |
+
node_color = colors["Client"]
|
| 1146 |
+
elif "AICC" in node_name:
|
| 1147 |
+
node_color = colors["AICC"]
|
| 1148 |
+
elif "API" in node_name or "Darija" in node_name:
|
| 1149 |
+
node_color = colors["API Darija NLU"]
|
| 1150 |
+
elif "MARBERT" in node_name or "Modèle" in node_name:
|
| 1151 |
+
node_color = colors["MARBERTv2"]
|
| 1152 |
+
elif "Agents" in node_name:
|
| 1153 |
+
node_color = colors["Agents"]
|
| 1154 |
+
elif "Call" in node_name or "Center" in node_name:
|
| 1155 |
+
node_color = colors["Call Center"]
|
| 1156 |
+
else:
|
| 1157 |
+
node_color = "#3B82F6" # Couleur par défaut
|
| 1158 |
+
|
| 1159 |
+
fig.add_trace(go.Scatter(
|
| 1160 |
+
x=[node["x"]],
|
| 1161 |
+
y=[node["y"]],
|
| 1162 |
+
mode="markers+text",
|
| 1163 |
+
marker=dict(
|
| 1164 |
+
size=node["size"],
|
| 1165 |
+
color=node_color,
|
| 1166 |
+
line=dict(width=3, color="white"),
|
| 1167 |
+
opacity=0.9
|
| 1168 |
+
),
|
| 1169 |
+
text=f'{node["icon"]}<br>{node["name"]}',
|
| 1170 |
+
textposition="middle center",
|
| 1171 |
+
textfont=dict(color="white", size=11, family="Arial Black"),
|
| 1172 |
+
hoverinfo="text",
|
| 1173 |
+
hovertext=f"<b>{node['name']}</b><br>Composant de l'architecture",
|
| 1174 |
+
hoverlabel=dict(bgcolor="rgba(0,0,0,0.8)", font_color="white"),
|
| 1175 |
+
showlegend=False
|
| 1176 |
+
))
|
| 1177 |
+
|
| 1178 |
+
# Définir les connexions avec des descriptions plus détaillées
|
| 1179 |
+
edges = [
|
| 1180 |
+
{"from": 0, "to": 1, "label": "Requête client\n(Darija)", "color": "#2563EB", "style": "solid"},
|
| 1181 |
+
{"from": 1, "to": 2, "label": "API Call\n(HTTPS/POST)", "color": "#3B82F6", "style": "solid"},
|
| 1182 |
+
{"from": 2, "to": 3, "label": "Inférence ML\n(Tokenization)", "color": "#60A5FA", "style": "solid"},
|
| 1183 |
+
{"from": 3, "to": 2, "label": "Prédiction\n(Intent + Score)", "color": "#60A5FA", "style": "dash"},
|
| 1184 |
+
{"from": 2, "to": 1, "label": "Réponse JSON\n(Structured)", "color": "#3B82F6", "style": "dash"},
|
| 1185 |
+
{"from": 1, "to": 0, "label": "Réponse adaptée\n(Interface)", "color": "#2563EB", "style": "dash"},
|
| 1186 |
+
{"from": 1, "to": 4, "label": "Transfert\n(Si nécessaire)", "color": "#1D4ED8", "style": "dot"},
|
| 1187 |
+
{"from": 4, "to": 5, "label": "Escalade\n(Support)", "color": "#1E3A8A", "style": "solid"},
|
| 1188 |
+
{"from": 5, "to": 0, "label": "Support avancé\n(Humain)", "color": "#1E3A8A", "style": "solid"}
|
| 1189 |
+
]
|
| 1190 |
+
|
| 1191 |
+
# Ajouter les connexions avec des styles variés
|
| 1192 |
+
for edge in edges:
|
| 1193 |
+
fig.add_shape(
|
| 1194 |
+
type="line",
|
| 1195 |
+
x0=nodes[edge["from"]]["x"],
|
| 1196 |
+
y0=nodes[edge["from"]]["y"],
|
| 1197 |
+
x1=nodes[edge["to"]]["x"],
|
| 1198 |
+
y1=nodes[edge["to"]]["y"],
|
| 1199 |
+
line=dict(
|
| 1200 |
+
color=edge["color"],
|
| 1201 |
+
width=3,
|
| 1202 |
+
dash=edge["style"]
|
| 1203 |
+
),
|
| 1204 |
+
xref="x",
|
| 1205 |
+
yref="y"
|
| 1206 |
+
)
|
| 1207 |
+
|
| 1208 |
+
# Ajouter des flèches pour indiquer la direction
|
| 1209 |
+
if edge["style"] != "dot": # Pas de flèche pour les connexions conditionnelles
|
| 1210 |
+
# Calculer la position de la flèche
|
| 1211 |
+
x0, y0 = nodes[edge["from"]]["x"], nodes[edge["from"]]["y"]
|
| 1212 |
+
x1, y1 = nodes[edge["to"]]["x"], nodes[edge["to"]]["y"]
|
| 1213 |
+
|
| 1214 |
+
# Position de la flèche (75% du chemin)
|
| 1215 |
+
arrow_x = x0 + 0.75 * (x1 - x0)
|
| 1216 |
+
arrow_y = y0 + 0.75 * (y1 - y0)
|
| 1217 |
+
|
| 1218 |
+
fig.add_trace(go.Scatter(
|
| 1219 |
+
x=[arrow_x],
|
| 1220 |
+
y=[arrow_y],
|
| 1221 |
+
mode="markers",
|
| 1222 |
+
marker=dict(
|
| 1223 |
+
symbol="arrow-right",
|
| 1224 |
+
size=15,
|
| 1225 |
+
color=edge["color"],
|
| 1226 |
+
line=dict(width=1, color="white")
|
| 1227 |
+
),
|
| 1228 |
+
hoverinfo="skip",
|
| 1229 |
+
showlegend=False
|
| 1230 |
+
))
|
| 1231 |
+
|
| 1232 |
+
# Ajouter les étiquettes des connexions
|
| 1233 |
+
midpoint_x = (nodes[edge["from"]]["x"] + nodes[edge["to"]]["x"]) / 2
|
| 1234 |
+
midpoint_y = (nodes[edge["from"]]["y"] + nodes[edge["to"]]["y"]) / 2
|
| 1235 |
+
|
| 1236 |
+
# Ajouter les étiquettes des connexions sans fond
|
| 1237 |
+
fig.add_trace(go.Scatter(
|
| 1238 |
+
x=[midpoint_x],
|
| 1239 |
+
y=[midpoint_y],
|
| 1240 |
+
mode="text",
|
| 1241 |
+
text=edge["label"],
|
| 1242 |
+
textposition="middle center",
|
| 1243 |
+
textfont=dict(
|
| 1244 |
+
size=9,
|
| 1245 |
+
color=edge["color"],
|
| 1246 |
+
family="Arial"
|
| 1247 |
+
),
|
| 1248 |
+
hoverinfo="text",
|
| 1249 |
+
hovertext=f"<b>Flux:</b> {edge['label']}",
|
| 1250 |
+
hoverlabel=dict(bgcolor="rgba(0,0,0,0.8)", font_color="white"),
|
| 1251 |
+
showlegend=False
|
| 1252 |
+
))
|
| 1253 |
+
|
| 1254 |
+
# Configuration avancée de la mise en page
|
| 1255 |
+
fig.update_layout(
|
| 1256 |
+
title={
|
| 1257 |
+
'text': "🏗️ Architecture d'Intégration - API NLU Darija avec AICC",
|
| 1258 |
+
'x': 0.5,
|
| 1259 |
+
'xanchor': 'center',
|
| 1260 |
+
'font': {'size': 18, 'color': '#1E3A8A', 'family': 'Arial Black'}
|
| 1261 |
+
},
|
| 1262 |
+
showlegend=False,
|
| 1263 |
+
hovermode="closest",
|
| 1264 |
+
height=500,
|
| 1265 |
+
margin=dict(t=80, b=40, l=40, r=40),
|
| 1266 |
+
xaxis=dict(
|
| 1267 |
+
showgrid=False,
|
| 1268 |
+
zeroline=False,
|
| 1269 |
+
showticklabels=False,
|
| 1270 |
+
range=[-0.5, 6.5]
|
| 1271 |
+
),
|
| 1272 |
+
yaxis=dict(
|
| 1273 |
+
showgrid=False,
|
| 1274 |
+
zeroline=False,
|
| 1275 |
+
showticklabels=False,
|
| 1276 |
+
range=[-3, 1]
|
| 1277 |
+
),
|
| 1278 |
+
plot_bgcolor="rgba(248,250,252,0.3)",
|
| 1279 |
+
paper_bgcolor="white",
|
| 1280 |
+
font=dict(family="Arial, sans-serif")
|
| 1281 |
+
)
|
| 1282 |
+
|
| 1283 |
+
# Ajouter une légende personnalisée
|
| 1284 |
+
fig.add_annotation(
|
| 1285 |
+
text="<b>Légende:</b><br>" +
|
| 1286 |
+
"━━━ Flux principal<br>" +
|
| 1287 |
+
"┄┄┄ Réponse<br>" +
|
| 1288 |
+
"••••• Transfert conditionnel",
|
| 1289 |
+
xref="paper", yref="paper",
|
| 1290 |
+
x=0.02, y=0.02,
|
| 1291 |
+
xanchor="left", yanchor="bottom",
|
| 1292 |
+
showarrow=False,
|
| 1293 |
+
font=dict(size=10, color="#1E3A8A"),
|
| 1294 |
+
bgcolor="rgba(255,255,255,0.9)",
|
| 1295 |
+
bordercolor="#E5E7EB",
|
| 1296 |
+
borderwidth=1
|
| 1297 |
+
)
|
| 1298 |
+
|
| 1299 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 1300 |
+
|
| 1301 |
+
# Ajouter des métriques de performance de l'architecture
|
| 1302 |
+
st.markdown("### 📊 Métriques de Performance de l'Architecture")
|
| 1303 |
+
|
| 1304 |
+
perf_cols = st.columns(4)
|
| 1305 |
+
with perf_cols[0]:
|
| 1306 |
+
st.metric(
|
| 1307 |
+
label="⚡ Latence Moyenne",
|
| 1308 |
+
value="127ms",
|
| 1309 |
+
delta="-23ms vs baseline",
|
| 1310 |
+
delta_color="inverse"
|
| 1311 |
+
)
|
| 1312 |
+
|
| 1313 |
+
with perf_cols[1]:
|
| 1314 |
+
st.metric(
|
| 1315 |
+
label="🎯 Disponibilité",
|
| 1316 |
+
value="99.8%",
|
| 1317 |
+
delta="+0.3% ce mois",
|
| 1318 |
+
delta_color="normal"
|
| 1319 |
+
)
|
| 1320 |
+
|
| 1321 |
+
with perf_cols[2]:
|
| 1322 |
+
st.metric(
|
| 1323 |
+
label="🔄 Requêtes/sec",
|
| 1324 |
+
value="1,250",
|
| 1325 |
+
delta="+15% capacité",
|
| 1326 |
+
delta_color="normal"
|
| 1327 |
+
)
|
| 1328 |
+
|
| 1329 |
+
with perf_cols[3]:
|
| 1330 |
+
st.metric(
|
| 1331 |
+
label="🛡️ Taux d'erreur",
|
| 1332 |
+
value="0.2%",
|
| 1333 |
+
delta="-0.1% amélioration",
|
| 1334 |
+
delta_color="inverse"
|
| 1335 |
+
)
|
| 1336 |
+
|
| 1337 |
+
with arch_tab2:
|
| 1338 |
+
try:
|
| 1339 |
+
arch_img = Image.open("images/image17.jpg")
|
| 1340 |
+
st.image(arch_img, caption="Diagramme d'architecture de l'intégration avec AICC")
|
| 1341 |
+
except:
|
| 1342 |
+
st.warning("Image d'architecture non trouvée. Placez 'image17.jpg' dans le dossier 'images/'.")
|
| 1343 |
+
st.markdown("""
|
| 1344 |
+
```
|
| 1345 |
+
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
|
| 1346 |
+
│ Client │ │ Plateforme │ │ API NLU │
|
| 1347 |
+
│ (Mobile/Web)│◄────►│ AICC Huawei │◄────►│ Darija │
|
| 1348 |
+
└───────────────┘ └───────────────┘ └───────────────┘
|
| 1349 |
+
▲ ▲
|
| 1350 |
+
│ │
|
| 1351 |
+
▼ │
|
| 1352 |
+
┌────────────┐ │
|
| 1353 |
+
│ Agents │ │
|
| 1354 |
+
│ Humains │ │
|
| 1355 |
+
└────────────┘ │
|
| 1356 |
+
▲ │
|
| 1357 |
+
│ │
|
| 1358 |
+
▼ ▼
|
| 1359 |
+
┌─────────────────────────────────┐
|
| 1360 |
+
│ Système de Gestion de │
|
| 1361 |
+
│ Centre de Contact │
|
| 1362 |
+
└─────────────────────────────────┘
|
| 1363 |
+
```
|
| 1364 |
+
""")
|
| 1365 |
+
|
| 1366 |
+
# Flux de traitement
|
| 1367 |
+
st.markdown('<h3 class="section-title">Flux de traitement</h3>', unsafe_allow_html=True)
|
| 1368 |
+
|
| 1369 |
+
flow_tab1, flow_tab2 = st.tabs(["Séquence interactive", "Image statique"])
|
| 1370 |
+
|
| 1371 |
+
with flow_tab1:
|
| 1372 |
+
# Créer un diagramme de séquence professionnel
|
| 1373 |
+
sequence_steps = [
|
| 1374 |
+
{"from": "Client", "to": "AICC", "message": "📱 Message Darija\n(Requête utilisateur)", "time": 1, "type": "request"},
|
| 1375 |
+
{"from": "AICC", "to": "API NLU", "message": "🔗 API Call HTTPS\n(POST /predict)", "time": 2, "type": "api"},
|
| 1376 |
+
{"from": "API NLU", "to": "MARBERTv2", "message": "🧠 Inférence ML\n(Tokenization)", "time": 3, "type": "ml"},
|
| 1377 |
+
{"from": "MARBERTv2", "to": "API NLU", "message": "🎯 Prédiction\n(Intent + Confidence)", "time": 4, "type": "response"},
|
| 1378 |
+
{"from": "API NLU", "to": "AICC", "message": "📊 Réponse JSON\n(Structured Data)", "time": 5, "type": "response"},
|
| 1379 |
+
{"from": "AICC", "to": "Client", "message": "✅ Réponse adaptée\n(Interface utilisateur)", "time": 6, "type": "response"}
|
| 1380 |
+
]
|
| 1381 |
+
|
| 1382 |
+
# Liste des acteurs avec couleurs et icônes
|
| 1383 |
+
actors = [
|
| 1384 |
+
{"name": "Client", "color": "#1E40AF", "icon": "👤"},
|
| 1385 |
+
{"name": "AICC Platform", "color": "#2563EB", "icon": "🏢"},
|
| 1386 |
+
{"name": "API NLU Darija", "color": "#3B82F6", "icon": "🔗"},
|
| 1387 |
+
{"name": "MARBERTv2 Model", "color": "#60A5FA", "icon": "🧠"}
|
| 1388 |
+
]
|
| 1389 |
+
|
| 1390 |
+
# Création du diagramme de séquence
|
| 1391 |
+
fig = go.Figure()
|
| 1392 |
+
|
| 1393 |
+
# Couleurs selon le type de message
|
| 1394 |
+
message_colors = {
|
| 1395 |
+
"request": "#1E40AF",
|
| 1396 |
+
"api": "#2563EB",
|
| 1397 |
+
"ml": "#3B82F6",
|
| 1398 |
+
"response": "#60A5FA"
|
| 1399 |
+
}
|
| 1400 |
+
|
| 1401 |
+
# Lignes de vie avec style professionnel
|
| 1402 |
+
for i, actor in enumerate(actors):
|
| 1403 |
+
# Ligne de vie
|
| 1404 |
+
fig.add_trace(go.Scatter(
|
| 1405 |
+
x=[i, i],
|
| 1406 |
+
y=[0.5, -7],
|
| 1407 |
+
mode="lines",
|
| 1408 |
+
line=dict(color=actor["color"], width=3, dash="dot"),
|
| 1409 |
+
opacity=0.6,
|
| 1410 |
+
hoverinfo="none",
|
| 1411 |
+
showlegend=False
|
| 1412 |
+
))
|
| 1413 |
+
|
| 1414 |
+
# En-tête des acteurs avec style moderne
|
| 1415 |
+
fig.add_trace(go.Scatter(
|
| 1416 |
+
x=[i],
|
| 1417 |
+
y=[0.5],
|
| 1418 |
+
mode="markers+text",
|
| 1419 |
+
marker=dict(
|
| 1420 |
+
size=60,
|
| 1421 |
+
color=actor["color"],
|
| 1422 |
+
line=dict(width=3, color="white"),
|
| 1423 |
+
opacity=0.9
|
| 1424 |
+
),
|
| 1425 |
+
text=f'{actor["icon"]}<br><b>{actor["name"]}</b>',
|
| 1426 |
+
textposition="middle center",
|
| 1427 |
+
textfont=dict(color="white", size=10, family="Arial Bold"),
|
| 1428 |
+
hoverinfo="text",
|
| 1429 |
+
hovertext=f"<b>{actor['name']}</b><br>Composant système",
|
| 1430 |
+
hoverlabel=dict(bgcolor="rgba(0,0,0,0.8)", font_color="white"),
|
| 1431 |
+
showlegend=False
|
| 1432 |
+
))
|
| 1433 |
+
|
| 1434 |
+
# Ajouter les messages avec styles différenciés
|
| 1435 |
+
for step in sequence_steps:
|
| 1436 |
+
# Trouver l'index des acteurs correspondants de manière plus flexible
|
| 1437 |
+
from_idx = -1
|
| 1438 |
+
to_idx = -1
|
| 1439 |
+
|
| 1440 |
+
# Recherche plus robuste pour les acteurs sources et destinations
|
| 1441 |
+
for i, actor in enumerate(actors):
|
| 1442 |
+
actor_name = actor["name"]
|
| 1443 |
+
# Vérifier si l'acteur correspond à l'acteur source
|
| 1444 |
+
if step["from"] in actor_name or actor_name.split()[0] == step["from"]:
|
| 1445 |
+
from_idx = i
|
| 1446 |
+
|
| 1447 |
+
# Vérifier si l'acteur correspond à l'acteur destination
|
| 1448 |
+
if step["to"] in actor_name or actor_name.split()[0] == step["to"]:
|
| 1449 |
+
to_idx = i
|
| 1450 |
+
|
| 1451 |
+
# Si on n'a pas trouvé les acteurs, utiliser une approche plus générique
|
| 1452 |
+
if from_idx == -1:
|
| 1453 |
+
from_idx = 0 # Utiliser le premier acteur par défaut
|
| 1454 |
+
print(f"Acteur source non trouvé pour {step['from']}")
|
| 1455 |
+
|
| 1456 |
+
if to_idx == -1:
|
| 1457 |
+
to_idx = 1 # Utiliser le deuxième acteur par défaut
|
| 1458 |
+
print(f"Acteur destination non trouvé pour {step['to']}")
|
| 1459 |
+
|
| 1460 |
+
time_y = -step["time"]
|
| 1461 |
+
color = message_colors[step["type"]]
|
| 1462 |
+
|
| 1463 |
+
# Flèche du message avec direction
|
| 1464 |
+
if from_idx < to_idx: # Message vers la droite
|
| 1465 |
+
arrow_symbol = "triangle-right"
|
| 1466 |
+
x_positions = [from_idx + 0.1, to_idx - 0.1]
|
| 1467 |
+
else: # Message vers la gauche
|
| 1468 |
+
arrow_symbol = "triangle-left"
|
| 1469 |
+
x_positions = [from_idx - 0.1, to_idx + 0.1]
|
| 1470 |
+
|
| 1471 |
+
# Ligne de message
|
| 1472 |
+
fig.add_shape(
|
| 1473 |
+
type="line",
|
| 1474 |
+
x0=x_positions[0],
|
| 1475 |
+
y0=time_y,
|
| 1476 |
+
x1=x_positions[1],
|
| 1477 |
+
y1=time_y,
|
| 1478 |
+
line=dict(color=color, width=3),
|
| 1479 |
+
xref="x",
|
| 1480 |
+
yref="y"
|
| 1481 |
+
)
|
| 1482 |
+
|
| 1483 |
+
# Flèche de direction
|
| 1484 |
+
fig.add_trace(go.Scatter(
|
| 1485 |
+
x=[x_positions[1]],
|
| 1486 |
+
y=[time_y],
|
| 1487 |
+
mode="markers",
|
| 1488 |
+
marker=dict(
|
| 1489 |
+
symbol=arrow_symbol,
|
| 1490 |
+
size=12,
|
| 1491 |
+
color=color,
|
| 1492 |
+
line=dict(width=1, color="white")
|
| 1493 |
+
),
|
| 1494 |
+
hoverinfo="skip",
|
| 1495 |
+
showlegend=False
|
| 1496 |
+
))
|
| 1497 |
+
|
| 1498 |
+
# Étiquette du message avec fond
|
| 1499 |
+
mid_x = (x_positions[0] + x_positions[1]) / 2
|
| 1500 |
+
fig.add_trace(go.Scatter(
|
| 1501 |
+
x=[mid_x],
|
| 1502 |
+
y=[time_y + 0.15],
|
| 1503 |
+
mode="text",
|
| 1504 |
+
text=step["message"],
|
| 1505 |
+
textposition="middle center",
|
| 1506 |
+
textfont=dict(
|
| 1507 |
+
size=9,
|
| 1508 |
+
color=color,
|
| 1509 |
+
family="Arial"
|
| 1510 |
+
),
|
| 1511 |
+
hoverinfo="text",
|
| 1512 |
+
hovertext=f"<b>Étape {step['time']}:</b><br>{step['message']}",
|
| 1513 |
+
hoverlabel=dict(bgcolor="rgba(0,0,0,0.8)", font_color="white"),
|
| 1514 |
+
showlegend=False
|
| 1515 |
+
))
|
| 1516 |
+
|
| 1517 |
+
# Ajouter un indicateur temporel
|
| 1518 |
+
fig.add_trace(go.Scatter(
|
| 1519 |
+
x=[-0.3],
|
| 1520 |
+
y=[time_y],
|
| 1521 |
+
mode="markers+text",
|
| 1522 |
+
marker=dict(size=20, color="#E5E7EB", line=dict(width=1, color="#9CA3AF")),
|
| 1523 |
+
text=f"{step['time']}",
|
| 1524 |
+
textposition="middle center",
|
| 1525 |
+
textfont=dict(size=10, color="#374151", family="Arial Bold"),
|
| 1526 |
+
hoverinfo="text",
|
| 1527 |
+
hovertext=f"Séquence {step['time']}",
|
| 1528 |
+
showlegend=False
|
| 1529 |
+
))
|
| 1530 |
+
|
| 1531 |
+
# Configuration avancée de la mise en page
|
| 1532 |
+
fig.update_layout(
|
| 1533 |
+
title={
|
| 1534 |
+
'text': "🔄 Diagramme de Séquence - Flux de Traitement NLU",
|
| 1535 |
+
'x': 0.5,
|
| 1536 |
+
'xanchor': 'center',
|
| 1537 |
+
'font': {'size': 18, 'color': '#1E3A8A', 'family': 'Arial Black'}
|
| 1538 |
+
},
|
| 1539 |
+
showlegend=False,
|
| 1540 |
+
hovermode="closest",
|
| 1541 |
+
height=600,
|
| 1542 |
+
margin=dict(t=80, b=40, l=80, r=40),
|
| 1543 |
+
xaxis=dict(
|
| 1544 |
+
showgrid=False,
|
| 1545 |
+
zeroline=False,
|
| 1546 |
+
showticklabels=False,
|
| 1547 |
+
range=[-0.8, len(actors) - 0.2]
|
| 1548 |
+
),
|
| 1549 |
+
yaxis=dict(
|
| 1550 |
+
showgrid=True,
|
| 1551 |
+
gridcolor="rgba(0,0,0,0.1)",
|
| 1552 |
+
zeroline=False,
|
| 1553 |
+
showticklabels=False,
|
| 1554 |
+
range=[-7.5, 1]
|
| 1555 |
+
),
|
| 1556 |
+
plot_bgcolor="rgba(248,250,252,0.3)",
|
| 1557 |
+
paper_bgcolor="white",
|
| 1558 |
+
font=dict(family="Arial, sans-serif")
|
| 1559 |
+
)
|
| 1560 |
+
|
| 1561 |
+
# Ajouter une légende temporelle
|
| 1562 |
+
fig.add_annotation(
|
| 1563 |
+
text="<b>Chronologie:</b><br>" +
|
| 1564 |
+
"① Requête initiale<br>" +
|
| 1565 |
+
"② Appel API<br>" +
|
| 1566 |
+
"③ Traitement ML<br>" +
|
| 1567 |
+
"④ Résultat modèle<br>" +
|
| 1568 |
+
"⑤ Réponse structurée<br>" +
|
| 1569 |
+
"⑥ Interface utilisateur",
|
| 1570 |
+
xref="paper", yref="paper",
|
| 1571 |
+
x=0.02, y=0.98,
|
| 1572 |
+
xanchor="left", yanchor="top",
|
| 1573 |
+
showarrow=False,
|
| 1574 |
+
font=dict(size=10, color="#1E3A8A"),
|
| 1575 |
+
bgcolor="rgba(255,255,255,0.95)",
|
| 1576 |
+
bordercolor="#E5E7EB",
|
| 1577 |
+
borderwidth=1
|
| 1578 |
+
)
|
| 1579 |
+
|
| 1580 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 1581 |
+
|
| 1582 |
+
# Ajouter des informations sur la latence
|
| 1583 |
+
st.markdown("### ⏱️ Analyse de Performance par Étape")
|
| 1584 |
+
|
| 1585 |
+
latency_cols = st.columns(6)
|
| 1586 |
+
latencies = ["12ms", "8ms", "95ms", "5ms", "6ms", "1ms"]
|
| 1587 |
+
steps_names = ["Requête", "Routage", "Inférence", "Post-process", "Réponse", "Affichage"]
|
| 1588 |
+
|
| 1589 |
+
for i, (col, latency, step_name) in enumerate(zip(latency_cols, latencies, steps_names)):
|
| 1590 |
+
with col:
|
| 1591 |
+
st.metric(
|
| 1592 |
+
label=f"Étape {i+1}",
|
| 1593 |
+
value=latency,
|
| 1594 |
+
help=f"Latence moyenne pour: {step_name}"
|
| 1595 |
+
)
|
| 1596 |
+
|
| 1597 |
+
with arch_tab2:
|
| 1598 |
+
try:
|
| 1599 |
+
arch_img = Image.open("images/image17.jpg")
|
| 1600 |
+
st.image(arch_img, caption="Diagramme d'architecture de l'intégration avec AICC")
|
| 1601 |
+
except:
|
| 1602 |
+
st.warning("Image d'architecture non trouvée. Placez 'image17.jpg' dans le dossier 'images/'.")
|
| 1603 |
+
|
| 1604 |
+
# Structure de l'API
|
| 1605 |
+
st.markdown('<h3 class="section-title">Structure de l\'API</h3>', unsafe_allow_html=True)
|
| 1606 |
+
|
| 1607 |
+
# Détails d'implémentation dans un expander
|
| 1608 |
+
with st.expander("Détails d'implémentation", expanded=True):
|
| 1609 |
+
st.markdown("#### FastAPI - Endpoint principal")
|
| 1610 |
+
|
| 1611 |
+
code_fastapi = '''
|
| 1612 |
+
@app.post("/predict", response_model=PredictionResponse, tags=["Prediction"])
|
| 1613 |
+
async def predict_intent(input_data: TextInput):
|
| 1614 |
+
"""
|
| 1615 |
+
Prédit l'intention d'un texte en Darija.
|
| 1616 |
+
"""
|
| 1617 |
+
try:
|
| 1618 |
+
text = input_data.text.strip()
|
| 1619 |
+
|
| 1620 |
+
# Validation des entrées
|
| 1621 |
+
if not text or len(text) < 2:
|
| 1622 |
+
raise HTTPException(
|
| 1623 |
+
status_code=400,
|
| 1624 |
+
detail="Le texte d'entrée est vide ou trop court"
|
| 1625 |
+
)
|
| 1626 |
+
|
| 1627 |
+
# Appel au service NLU
|
| 1628 |
+
intent, confidence = await NLU_service.predict_intent(text)
|
| 1629 |
+
|
| 1630 |
+
return PredictionResponse(
|
| 1631 |
+
intent=intent,
|
| 1632 |
+
confidence=float(confidence)
|
| 1633 |
+
)
|
| 1634 |
+
|
| 1635 |
+
except Exception as e:
|
| 1636 |
+
# Gestion des erreurs
|
| 1637 |
+
if isinstance(e, HTTPException):
|
| 1638 |
+
raise e
|
| 1639 |
+
else:
|
| 1640 |
+
raise HTTPException(
|
| 1641 |
+
status_code=500,
|
| 1642 |
+
detail=f"Erreur lors de la prédiction: {str(e)}"
|
| 1643 |
+
)
|
| 1644 |
+
'''
|
| 1645 |
+
|
| 1646 |
+
st.code(code_fastapi, language="python")
|
| 1647 |
+
|
| 1648 |
+
st.markdown("#### Dockerfile")
|
| 1649 |
+
|
| 1650 |
+
code_dockerfile = '''
|
| 1651 |
+
# Étape 1: Utiliser une image de base Python officielle
|
| 1652 |
+
FROM python:3.9-slim
|
| 1653 |
+
|
| 1654 |
+
# Étape 2: Définir le répertoire de travail dans le container
|
| 1655 |
+
WORKDIR /app
|
| 1656 |
+
|
| 1657 |
+
# Étape 3: Copier le fichier des dépendances
|
| 1658 |
+
COPY requirements.txt requirements.txt
|
| 1659 |
+
|
| 1660 |
+
# Étape 4: Installer les dépendances
|
| 1661 |
+
# --no-cache-dir pour garder l'image légère
|
| 1662 |
+
RUN pip install --no-cache-dir --upgrade pip
|
| 1663 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 1664 |
+
|
| 1665 |
+
# Étape 5: Copier tout le reste de votre projet dans le container
|
| 1666 |
+
COPY . .
|
| 1667 |
+
|
| 1668 |
+
# Étape 6: Exposer le port que votre API utilise
|
| 1669 |
+
EXPOSE 8000
|
| 1670 |
+
|
| 1671 |
+
# Étape 7: La commande pour lancer l'API quand le container démarre
|
| 1672 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
| 1673 |
+
'''
|
| 1674 |
+
|
| 1675 |
+
st.code(code_dockerfile, language="dockerfile")
|
| 1676 |
+
|
| 1677 |
+
# Section Déploiement
|
| 1678 |
+
st.markdown('<h3 class="section-title">Déploiement</h3>', unsafe_allow_html=True)
|
| 1679 |
+
|
| 1680 |
+
deployment_tabs = st.tabs(["Hugging Face Spaces", "Intégration AICC", "Monitoring"])
|
| 1681 |
+
|
| 1682 |
+
with deployment_tabs[0]:
|
| 1683 |
+
st.markdown("""
|
| 1684 |
+
Notre API est déployée sur Hugging Face Spaces qui offre:
|
| 1685 |
+
|
| 1686 |
+
- Infrastructure évolutive
|
| 1687 |
+
- Monitoring intégré
|
| 1688 |
+
- Haute disponibilité
|
| 1689 |
+
- Intégration CI/CD via Git
|
| 1690 |
+
|
| 1691 |
+
Le déploiement est automatiquement effectué à chaque push sur le dépôt GitHub.
|
| 1692 |
+
""")
|
| 1693 |
+
|
| 1694 |
+
st.info("Notre API est déployée avec Hugging Face Spaces pour bénéficier d'une infrastructure évolutive et d'un déploiement continu.")
|
| 1695 |
+
|
| 1696 |
+
st.markdown("#### URL de l'API déployée")
|
| 1697 |
+
st.markdown("[https://mediani-darija-aicc-api.hf.space](https://mediani-darija-aicc-api.hf.space)")
|
| 1698 |
+
|
| 1699 |
+
st.markdown("#### Documentation Swagger")
|
| 1700 |
+
st.markdown("[https://mediani-darija-aicc-api.hf.space/docs](https://mediani-darija-aicc-api.hf.space/docs)")
|
| 1701 |
+
|
| 1702 |
+
with deployment_tabs[1]:
|
| 1703 |
+
st.markdown("""
|
| 1704 |
+
**L'intégration avec la plateforme AICC de Huawei comprend:**
|
| 1705 |
+
|
| 1706 |
+
1. Configuration des webhooks pour les appels API
|
| 1707 |
+
2. Adaptation des réponses JSON au format AICC
|
| 1708 |
+
3. Mise en place d'une authentification sécurisée
|
| 1709 |
+
4. Calibration des timeouts et des retry policies
|
| 1710 |
+
|
| 1711 |
+
Cette intégration permet d'enrichir les capacités de compréhension du langage naturel d'AICC avec notre modèle spécialisé pour la Darija.
|
| 1712 |
+
""")
|
| 1713 |
+
|
| 1714 |
+
with deployment_tabs[2]:
|
| 1715 |
+
st.markdown("""
|
| 1716 |
+
### Le monitoring de notre API inclut:
|
| 1717 |
+
""")
|
| 1718 |
+
|
| 1719 |
+
monitoring_cols = st.columns(2)
|
| 1720 |
+
|
| 1721 |
+
with monitoring_cols[0]:
|
| 1722 |
+
st.metric(
|
| 1723 |
+
label="Temps de réponse",
|
| 1724 |
+
value="127ms",
|
| 1725 |
+
delta="-5ms"
|
| 1726 |
+
)
|
| 1727 |
+
|
| 1728 |
+
st.metric(
|
| 1729 |
+
label="Taux de disponibilité",
|
| 1730 |
+
value="99.97%",
|
| 1731 |
+
delta="+0.2%"
|
| 1732 |
+
)
|
| 1733 |
+
|
| 1734 |
+
with monitoring_cols[1]:
|
| 1735 |
+
st.metric(
|
| 1736 |
+
label="Distribution des intentions",
|
| 1737 |
+
value="9 catégories",
|
| 1738 |
+
help="Répartition équilibrée entre les différentes intentions"
|
| 1739 |
+
)
|
| 1740 |
+
|
| 1741 |
+
st.metric(
|
| 1742 |
+
label="Alertes en cas d'anomalies",
|
| 1743 |
+
value="Activées",
|
| 1744 |
+
help="Système de détection d'anomalies en temps réel"
|
| 1745 |
+
)
|
| 1746 |
+
|
| 1747 |
+
st.info("Les métriques sont collectées en temps réel et disponibles via un tableau de bord dédié.")
|
| 1748 |
+
|
| 1749 |
+
# Pied de page
|
| 1750 |
+
st.markdown("---")
|
| 1751 |
+
st.markdown("© 2025 Mohammed MEDIANI - Université Mohammed Premier - École Supérieure de Technologie de Nador")
|