Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,287 Bytes
56cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
import math
import random
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from functools import reduce
from itertools import accumulate
from random import choices
from typing import List, Optional, Sequence, Tuple
import pytorch_lightning as ptl
import torch
from datasets import (DatasetDict, concatenate_datasets, load_dataset,
load_from_disk)
from einops import rearrange
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import (BatchSampler, DataLoader, Sampler,
SubsetRandomSampler)
from transformers import PreTrainedTokenizerFast
from tts.tools import (audio_to_text_partial_neighbor_mask, packmask_2d,
pad_2d_sequence, sequence_mask)
class BucketSampler(Sampler[List[int]]):
def __init__(
self,
buckets: List[List[int]],
batch_sizes: List[int] | int,
bucket_sampling_weights: List[Tuple[float]] = None,
drop_last: bool = True,
distributed: bool = True, # TODO - implement not distributed as well
sample_bucket: Optional[int] = None,
seed: int = 123,
epoch_seed: bool = True,
):
if type(batch_sizes) is int:
batch_sizes = [batch_sizes] * len(buckets)
else:
assert len(buckets) == len(batch_sizes)
if bucket_sampling_weights is not None:
assert len(bucket_sampling_weights) == len(batch_sizes)
self.bucket_sampling_weights = bucket_sampling_weights
self.num_replicas = torch.distributed.get_world_size()
self.rank = torch.distributed.get_rank()
self.buckets = [
b[self.rank : len(b) - len(b) % self.num_replicas : self.num_replicas]
for b in buckets
]
self.num_samples = [len(b) // self.num_replicas for b in buckets]
self.batch_sizes = batch_sizes
self.total_sizes = [
ns // bs for ns, bs in zip(self.num_samples, self.batch_sizes)
]
self.drop_last = drop_last
self.seed = seed
self.epoch = 0
self.sample_bucket = sample_bucket
self.epoch_seed = epoch_seed
self.batch_size = batch_sizes[0]
def set_epoch(self, epoch: int):
self.epoch = epoch
def __len__(self):
return sum(self.total_sizes)
def __iter__(self):
generator = torch.Generator()
generator.manual_seed(self.seed + self.epoch * self.epoch_seed + self.rank)
pool = [
BatchSampler(
SubsetRandomSampler(b, generator=generator),
bs,
drop_last=self.drop_last,
)
for b, bs in zip(self.buckets, self.batch_sizes)
]
pool = [iter(b) for b in pool]
weights = (
[w for w in self.bucket_sampling_weights]
if self.bucket_sampling_weights is not None
else None
)
while pool: # sample until all buckets are done
idx, bucket = choices(list(enumerate(pool)), weights=weights)[0]
try:
batch = next(bucket)
yield batch
except StopIteration:
pool.pop(idx) # if bucket is done, throw it
if weights is not None:
weights.pop(idx)
class DatasetFactory(ABC):
@abstractmethod
def build(self):
pass
class HiFiTTS2_AudioLatent(DatasetFactory):
def __init__(
self,
path: str | list[str] = "hifitts2_vae8_dataset",
duration_column: str = "audio_duration",
duration_path: str | None = None,
expresso_path: str | None = None,
min_dur: float = 3.0,
max_dur: float = 20.1,
framerate: float = 25.0,
):
self.min_dur = min_dur
self.max_dur = max_dur
self.path = path
self.duration_column = duration_column
self.duration_path = duration_path
self.framerate = framerate
self.expresso_path = expresso_path
def build(self):
if type(self.path) is str:
self.path = [self.path]
datasets = [load_from_disk(x) for x in self.path]
dataset = concatenate_datasets(datasets).with_format("torch")
if self.duration_path is not None:
duration_dataset = load_from_disk(self.duration_path)
dataset = concatenate_datasets(
[dataset, duration_dataset], axis=1
).with_format("torch")
dataset = dataset.filter(
lambda dur: dur > self.min_dur and dur < self.max_dur,
input_columns=self.duration_column,
)
dataset = dataset.rename_column(self.duration_column, "audio_duration")
# dataset = dataset.map(
# lambda x: {"audio_duration": x.shape[1] / self.framerate},
# input_columns="audio_latent",
# ).filter(
# lambda dur: dur > self.min_dur and dur < self.max_dur,
# input_columns="audio_duration",
# )
if self.expresso_path is not None:
expresso_dataset = load_from_disk(self.expresso_path).with_format("torch")
dataset = dataset.sort("audio_duration")
return DatasetDict({"train": dataset})
@dataclass
class SegmentsCollateArgs:
abs_style_intensity: bool = False
merge_endpoints: bool = True
block_crossatt_mask: bool = True
alternate_crossatt_pos: bool = False
block_crossatt_past_tokens: int = 0
block_crossatt_future_tokens: int = 0
eos: bool = True
bos: bool = True
@dataclass
class CollateArgs:
abs_style_intensity: bool = False
random_text_segment: bool = False
eos: bool = True
bos: bool = True
num_stop_tokens: int = 1
def random_log_breakpoints(
seq: Sequence, a: int, b: int, gap: bool = False
) -> List[int]:
"""
Generate random breakpoints in a sequence where the gap X between
successive breakpoints satisfies log2(X) ~ Uniform[log2(a), log2(b)].
Gaps are then rounded to the nearest integer in [a, b].
Parameters
----------
seq : Sequence
The input sequence in which to place breakpoints.
a : int
Minimum gap (>= 1).
b : int
Maximum gap (>= a).
Returns
-------
List[int]
Sorted list of breakpoint indices (0 < idx < len(seq)).
"""
if a < 1 or b < a:
raise ValueError("Require 1 <= a <= b")
n = len(seq)
breakpoints: List[int] = []
pos = 0
while True:
# sample U ~ Uniform(log2(a), log2(b))
u = random.uniform(math.log2(a), math.log2(b))
# map back to X = 2^U, then round to nearest integer
x = 2**u
gap = int(math.floor(x + 0.5))
# enforce integer bounds exactly
gap = max(a, min(b, gap))
pos += gap
if pos >= n:
if gap:
breakpoints.append(n - sum(breakpoints))
break
if gap:
breakpoints.append(gap)
else:
breakpoints.append(pos)
return breakpoints
def standalone_collate_latent(
batch,
tokenizer,
abs_style_intensity: bool = False,
random_text_segment: bool = False,
bos: bool = True,
eos: bool = True,
num_stop_tokens: int = 1,
):
audio_latent, text = zip(*[(x["audio_latent"], x["text"]) for x in batch])
audio_latent = [x.squeeze() for x in audio_latent]
text_pp = []
for t in text:
if bos:
t = "[BOS]" + t
if eos:
t = t + "[EOS]"
text_pp.append(t)
text_token = [torch.LongTensor(tokenizer.encode(x)) for x in text_pp]
xlen, ylen = map(lambda x: [xx.shape[0] for xx in x], (text_token, audio_latent))
stop_token = []
text_stop_token = []
for x, y in zip(xlen, ylen):
tst = torch.zeros(x)
st = torch.zeros(y)
st_idx = random.randint(1, num_stop_tokens)
st[-1] = st_idx
tst[-1] = st_idx
stop_token.append(st)
text_stop_token.append(tst)
stop_token = pad_sequence(stop_token, batch_first=True).long()
text_stop_token = pad_sequence(text_stop_token, batch_first=True).long()
x_mask, y_mask = map(
lambda x: sequence_mask(x, device="cpu"),
(torch.tensor(xlen), torch.tensor(ylen)),
)
text_rel_pos = None
if random_text_segment:
breakpoints = [random_log_breakpoints(t, 32, 256, gap=True) for t in text_token]
encoder_mask = pad_2d_sequence([packmask_2d(b, b) for b in breakpoints])
text_rel_pos = [torch.cat([torch.arange(bb) for bb in b]) for b in breakpoints]
text_rel_pos = pad_sequence(text_rel_pos, batch_first=True)
else:
encoder_mask = x_mask.unsqueeze(1) * x_mask.unsqueeze(2)
crossatt_mask = x_mask.unsqueeze(1) * y_mask.unsqueeze(2)
audio_latent, text_token = map(
lambda x: pad_sequence(x, batch_first=True, padding_value=0.0),
(audio_latent, text_token),
)
if abs_style_intensity:
abs_style_intensity = [x["abs_style_intensity"] for x in batch]
abs_style_intensity = [
torch.zeros(1).long()[0] if x.isnan() else x for x in abs_style_intensity
]
abs_style_intensity = torch.stack(abs_style_intensity)
else:
abs_style_intensity = None
return {
"text_token": text_token,
"audio_token": audio_latent,
"crossatt_mask": crossatt_mask,
"encoder_mask": encoder_mask,
"y_mask": y_mask,
"stop_token": stop_token,
"text_stop_token": text_stop_token,
"x_len": xlen,
"y_len": ylen,
"abs_style_intensity": abs_style_intensity,
"text_rel_pos": text_rel_pos,
}
def standalone_collate_latent_segments(
batch,
tokenizer,
abs_style_intensity: bool = False,
merge_endpoints: bool = True,
block_crossatt_mask: bool = True,
block_crossatt_past_tokens: int = 0,
block_crossatt_future_tokens: int = 0,
alternate_crossatt_pos: bool = False,
alternate_crossatt_shift: int = 1000,
eos: bool = True,
bos: bool = True,
):
audio_latent, text, token_duration = zip(
*[(x["audio_latent"], x["text"], x["token_duration"]) for x in batch]
)
text_pp = []
for t in text:
if bos:
t = "[BOS]" + t
if eos:
t = t + "[EOS]"
text_pp.append(t)
if merge_endpoints:
tokens = [tokenizer.encode(x) for x in text]
new_td = []
for td in token_duration:
begin, end = td[0], td[-1]
tdd = td[1:-1]
tdd[0] += begin
tdd[-1] += end
new_td.append(tdd)
token_duration = new_td
else:
tokens = [tokenizer.encode(x) for x in text_pp]
segments = [
random_segments_from_text_and_durations(t, td.tolist())
for t, td in zip(tokens, token_duration)
]
bos, eos = map(tokenizer.encode, ("[BOS]", "[EOS]"))
audio_segments = []
text_segments = []
audio_segments_len = []
text_segments_len = []
for aud, seg in zip(audio_latent, segments):
tt, at, tt_l, at_l = [], [], [], []
for i, s in enumerate(seg):
ttoken = s["text_token"]
if bos:
ttoken = bos + ttoken
if eos:
ttoken = ttoken + eos
tt.append(ttoken)
a_s = aud[:, s["start"] : s["end"]]
at.append(a_s)
at_l.append(a_s.shape[1])
tt_l.append(len(ttoken))
audio_segments.append(at)
text_segments.append(tt)
audio_segments_len.append(at_l)
text_segments_len.append(tt_l)
text_token = [torch.LongTensor(reduce(list.__add__, x)) for x in text_segments]
audio_latent = [torch.cat(a_ss, dim=1).squeeze(0) for a_ss in audio_segments]
xlen, ylen = map(lambda x: [xx.shape[0] for xx in x], (text_token, audio_latent))
x_mask, y_mask = map(
lambda x: sequence_mask(x, device="cpu"),
(torch.tensor(xlen), torch.tensor(ylen)),
)
audio_latent, text_token = map(
lambda x: pad_sequence(x, batch_first=True, padding_value=0),
(audio_latent, text_token),
)
encoder_mask = x_mask.unsqueeze(1) * x_mask.unsqueeze(2)
if block_crossatt_mask:
crossatt_mask = [
audio_to_text_partial_neighbor_mask(
x,
y,
past_tokens=block_crossatt_past_tokens,
future_tokens=block_crossatt_future_tokens,
)
for x, y in zip(text_segments_len, audio_segments_len)
]
crossatt_mask = pad_2d_sequence(crossatt_mask)
pad_mask = rearrange(torch.arange(max(ylen)), "n -> 1 n 1") >= rearrange(
torch.tensor(ylen), "n -> n 1 1"
)
else:
crossatt_mask = x_mask.unsqueeze(1) * y_mask.unsqueeze(2)
text_rel_pos = pad_sequence(
[torch.cat([torch.arange(x) for x in tsl]) for tsl in text_segments_len],
batch_first=True,
)
crossatt_rel_pos = None
if alternate_crossatt_pos:
crossatt_rel_pos = []
for tsl in text_segments_len:
rel_pos = []
random_shift = int(random.random() < 0.5)
for i, x in enumerate(tsl):
rel_pos.append(
torch.arange(x)
+ ((random_shift + i) % 2) * alternate_crossatt_shift
)
crossatt_rel_pos.append(torch.cat(rel_pos))
crossatt_rel_pos = pad_sequence(crossatt_rel_pos, batch_first=True)
audio_rel_pos = pad_sequence(
[torch.cat([torch.arange(x) for x in asl]) for asl in audio_segments_len],
batch_first=True,
)
stop_token = []
for asl in audio_segments_len:
sts = []
for x in asl:
st = torch.zeros(x)
st[-1] = 1
sts.append(st)
stop_token.append(torch.cat(sts))
stop_token = pad_sequence(stop_token, batch_first=True).int()
text_stop_token = []
for asl in text_segments_len:
sts = []
for x in asl:
st = torch.zeros(x)
st[-1] = 1
sts.append(st)
text_stop_token.append(torch.cat(sts))
text_stop_token = pad_sequence(text_stop_token, batch_first=True).int()
if abs_style_intensity:
abs_style_intensity = [x["abs_style_intensity"] for x in batch]
abs_style_intensity = [
torch.zeros(1).long()[0] if x.isnan() else x for x in abs_style_intensity
]
abs_style_intensity = torch.stack(abs_style_intensity)
else:
abs_style_intensity = None
return {
"text_token": text_token,
"audio_token": audio_latent,
"crossatt_mask": crossatt_mask,
"encoder_mask": encoder_mask,
"y_mask": y_mask,
"stop_token": stop_token,
"text_stop_token": text_stop_token,
"x_mask": x_mask,
"x_len": xlen,
"y_len": ylen,
"abs_style_intensity": abs_style_intensity,
"text_rel_pos": text_rel_pos,
"crossatt_rel_pos": crossatt_rel_pos,
"audio_rel_pos": audio_rel_pos,
"segments": segments,
}
def random_segments_from_text_and_durations(
text,
dur,
low_bnd: int = 8,
up_bnd: int = 384,
):
b = random_log_breakpoints(text, low_bnd, up_bnd)
bounds = [0] + b + [len(text)]
segs, durs = [], []
for a, b in zip(bounds[:-1], bounds[1:]):
segs.append(text[a:b])
durs.append(sum(dur[a:b]))
bounds = [0] + list(accumulate(durs, int.__add__))
segs_dicts = []
for t, s, e in zip(segs, bounds[:-1], bounds[1:]):
segs_dicts.append(
{
"start": s,
"end": e,
"text_token": t,
}
)
segs_dicts[-1]["end"] += 1
return segs_dicts
class LinaDataModule(ptl.LightningDataModule):
def __init__(
self,
path: str | DatasetFactory,
quant_layer: list[int],
train_batch_size: int = 8,
token_by_batch: int | None = None,
n_buckets=5,
codec_rate_hz: int = 75,
num_workers: int = 8,
test_size: int = 2000,
val_batch_size: int = 8,
seed: int = 123,
train_test_seed: int = 123,
segments: bool = False,
segments_args: SegmentsCollateArgs = field(
default_factory=lambda: SegmentsCollateArgs()
),
collate_args: CollateArgs = field(default_factory=lambda: CollateArgs()),
block_mask_segments: bool = False,
tokenizer_file=None,
trail_end_frame: int | None = None,
split="train",
add_columns: str | list[str] | None = None,
add_text_tokens: list[str] | None = None,
type: str = "latent",
):
super().__init__()
self.path = path
self.codec_rate_hz = codec_rate_hz
self.num_workers = num_workers
self.quant_layer = quant_layer
self.seed = seed
self.segments = segments
self.segments_args = segments_args
self.collate_args = collate_args
self.train_test_seed = train_test_seed
self.test_size = test_size
self.val_batch_size = val_batch_size
self.train_batch_size = train_batch_size
self.split = split
self.trail_end_frame = trail_end_frame
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_file)
if add_text_tokens:
self.tokenizer.add_tokens(add_text_tokens)
self.add_columns = add_columns
self.n_buckets = n_buckets
self.token_by_batch = token_by_batch
self.type = type
def setup(self, stage):
if isinstance(self.path, DatasetFactory):
self.dataset = self.path.build()
else:
self.dataset = load_dataset(self.path)
split = self.split
columns = [
"audio_latent" if self.type == "latent" else "audio_token",
"text",
"audio_duration",
]
if self.add_columns is not None:
if type(self.add_columns) is str:
self.add_columns = [self.add_columns]
columns += self.add_columns
if self.segments:
columns += ["token_duration"]
self.collate_fn = lambda x: segments_collate(x, self.tokenizer)
else:
self.collate_fn = lambda x: standalone_collate(
x, self.tokenizer, abs_style_intensity="abs_style_intensity" in columns
)
self.dataset = (
self.dataset[split]
.train_test_split(test_size=self.test_size, seed=self.train_test_seed)
.select_columns(columns)
)
if self.type == "latent":
if self.segments:
self.collate_fn = lambda x: standalone_collate_latent_segments(
x,
self.tokenizer,
**self.segments_args,
)
else:
self.collate_fn = lambda x: standalone_collate_latent(
x,
self.tokenizer,
**self.collate_args,
)
def get_buckets_by_quantile(duration, n_quantile, is_sorted=False):
if is_sorted:
size = len(duration)
bucket_size = size // n_quantile
buckets = [
list(range(i, min(i + bucket_size, size)))
for i in range(0, size, bucket_size)
]
else:
idxdur = list(enumerate(duration))
idxdur.sort(key=lambda x: x[1])
idx, dur = zip(*idxdur)
bucket_size = len(idx) // n_quantile
buckets = [list(x) for x in zip(*[iter(idx)] * bucket_size)]
return buckets
if self.token_by_batch is not None:
train_buckets = get_buckets_by_quantile(
self.dataset["train"]["audio_duration"], self.n_buckets
)
max_audio_durations = [
self.dataset["train"]["audio_duration"][x[-1]] for x in train_buckets
]
batch_sizes = [
int(self.token_by_batch // (self.codec_rate_hz * ad))
for ad in max_audio_durations
]
self.train_batch_sampler = BucketSampler(train_buckets, batch_sizes)
def train_dataloader(self):
if self.token_by_batch is not None:
return DataLoader(
self.dataset["train"].with_format("torch"),
num_workers=self.num_workers,
collate_fn=self.collate_fn,
batch_sampler=self.train_batch_sampler,
)
else:
return DataLoader(
self.dataset["train"].with_format("torch"),
num_workers=self.num_workers,
batch_size=self.train_batch_size,
collate_fn=self.collate_fn,
)
def val_dataloader(self):
return DataLoader(
self.dataset["test"].with_format("torch"),
batch_size=self.val_batch_size,
num_workers=0,
collate_fn=self.collate_fn,
)
|