Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,594 Bytes
56cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from itertools import accumulate
from typing import Callable, List, Optional
import torch
import torch.nn.functional as F
default_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def widen_alignment(
alignment: torch.Tensor, width: int | tuple[int, int], axis: str = "S"
) -> torch.Tensor:
"""
Widen 1-bands along one axis of an alignment matrix.
Args:
alignment: (B, T, S) binary/bool/int tensor
width: int or (left, right) expansion
e.g. 2 -> expand ±2
(1,3) -> expand -1 on the left, +3 on the right
axis: "S" to widen horizontally (across S),
"T" to widen vertically (across T)
Returns:
(B, T, S) tensor with widened 1-bands along the chosen axis
"""
assert axis in ("S", "T")
orig_dtype = alignment.dtype
dev = alignment.device
# normalize widths
if isinstance(width, int):
left, right = width, width
else:
left, right = width
ksize = left + right + 1
kernel = torch.ones(1, 1, ksize, device=dev)
if axis == "S":
# (B*T, 1, S)
x = alignment.view(-1, 1, alignment.size(-1)).float()
x = F.pad(x, (left, right)) # explicit asymmetric padding
y = F.conv1d(x, kernel)
y = (y > 0).view_as(alignment)
else: # axis == "T"
# (B*S, 1, T)
x = (
alignment.permute(0, 2, 1)
.contiguous()
.view(-1, 1, alignment.size(1))
.float()
)
x = F.pad(x, (left, right))
y = F.conv1d(x, kernel)
# Back to (B, T, S)
y = (
(y > 0)
.view(alignment.size(0), alignment.size(2), alignment.size(1))
.permute(0, 2, 1)
)
# Cast back to original dtype
if orig_dtype == torch.bool:
return y
elif orig_dtype.is_floating_point:
return y.to(orig_dtype)
else:
return y.to(orig_dtype)
def collect_heads(cache, selected_heads):
return torch.stack(
[
cache[layer]["crossatt_weights"][:, [head], [-1]]
for layer, head in selected_heads
],
dim=1,
)
def expand(x, r):
b, n, d = x.shape
x = x.unsqueeze(-1).repeat(1, 1, 1, r).reshape(b, n, r * d)
return x
def path_matrix(positions: torch.Tensor, num_positions: int = None) -> torch.Tensor:
if num_positions is None:
num_positions = positions.max().item() + 1
return F.one_hot(positions, num_classes=num_positions).to(torch.int)
def pad_2d_sequence(seq, padding_value=0):
max_x, max_y = map(max, zip(*map(lambda x: x.shape, seq)))
pad = lambda x: torch.nn.functional.pad(
x,
(0, max_y - x.shape[1], 0, max_x - x.shape[0]),
value=padding_value,
)
return torch.stack([pad(x) for x in seq])
def audio_to_text_partial_neighbor_mask(
xlen,
ylen,
*,
past_tokens: int = 0,
future_tokens: int = 0,
device=None,
dtype=torch.bool,
):
"""
Build an (audio_len, text_len) boolean mask where True = allowed to attend.
Each audio frame (group g) can attend:
- all tokens of text group g (aligned word),
- last `past_tokens` tokens of text group g-1 (previous word),
- first `future_tokens` tokens of text group g+1 (next word).
Args:
xlen (list[int]): token counts per text word (groups), e.g. [2,1,3]
ylen (list[int]): frame counts per audio word (aligned groups), e.g. [4,2,5]
past_tokens (int): allow up to this many tokens from end of previous word
future_tokens (int): allow up to this many tokens from start of next word
device: torch device
dtype: output dtype (bool by default)
Returns:
mask: (A, T) boolean tensor (A = sum(ylen), T = sum(xlen))
"""
if len(xlen) != len(ylen):
raise ValueError(f"len(xlen)={len(xlen)} must equal len(ylen)={len(ylen)}")
if any(l <= 0 for l in xlen) or any(l <= 0 for l in ylen):
raise ValueError("All lengths must be positive.")
if past_tokens < 0 or future_tokens < 0:
raise ValueError("past_tokens and future_tokens must be >= 0.")
n = len(xlen)
# Text-side: group id per token and position within its group
x_groups = torch.arange(n, device=device).repeat_interleave(
torch.tensor(xlen, device=device)
) # (T,)
pos_in_group = torch.cat([torch.arange(L, device=device) for L in xlen]) # (T,)
# tokens from the end (0 for last token, 1 for second-to-last, ...)
pos_from_end = torch.cat(
[torch.arange(L - 1, -1, -1, device=device) for L in xlen]
) # (T,)
T = x_groups.numel()
# Audio-side: group id per frame
y_groups = torch.arange(n, device=device).repeat_interleave(
torch.tensor(ylen, device=device)
) # (A,)
A = y_groups.numel()
# Broadcast to (A, T)
G_audio = y_groups[:, None] # (A, 1)
G_text = x_groups[None, :] # (1, T)
# Conditions:
# 1) aligned word: all tokens
aligned = G_text == G_audio
# 2) previous word: last `past_tokens` tokens only
if past_tokens > 0:
prev_group = G_text == (G_audio - 1)
prev_tail = pos_from_end[None, :] < past_tokens
prev_ok = prev_group & prev_tail
else:
prev_ok = torch.zeros((A, T), dtype=torch.bool, device=device)
# 3) next word: first `future_tokens` tokens only
if future_tokens > 0:
next_group = G_text == (G_audio + 1)
next_head = pos_in_group[None, :] < future_tokens
next_ok = next_group & next_head
else:
next_ok = torch.zeros((A, T), dtype=torch.bool, device=device)
mask = (aligned | prev_ok | next_ok).to(dtype=dtype)
return mask
def packmask_2d(xlen: list[int], ylen: list[int], offset: int = 0) -> torch.Tensor:
_, ybound = map(lambda x: [0] + list(accumulate(x, int.__add__)), (xlen, ylen))
lb, hb = [], []
for n, l, h in zip(xlen, ybound[:-1], ybound[1:]):
lb += [l] * n
hb += [h] * n
lb, hb = map(torch.tensor, (lb, hb))
if offset:
lb -= offset
hb += offset
rge = torch.arange(ybound[-1])
lm = rge.unsqueeze(0) >= lb.unsqueeze(1)
hm = rge.unsqueeze(0) < hb.unsqueeze(1)
return lm * hm
def topk_sampling(seq, k=1, temp=1.0):
topk = torch.topk(seq, k, dim=-1)
logits = seq / temp
mask = logits < topk.values[:, [-1]]
logits[mask] = -float("Inf")
probs = torch.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1)
def delay_rvq(
code,
head_token: int = -2,
tail_token: int = -3,
):
q, _ = code.shape
extension = torch.ones((q, q + 1)).tril() * head_token
extension += torch.ones((q + 1, q)).tril(diagonal=-1).T * tail_token
extension = torch.flip(extension, (1,))
extended_code = torch.cat((code, extension), axis=1)
for i in range(q):
extended_code[i, :] = torch.roll(extended_code[i, :], i + 1)
return extended_code.long()
def undelay_rvq(extended_code):
q, _, n = extended_code.shape
out = []
for i in range(q):
out.append(torch.roll(extended_code[i], -(i + 1), dims=1))
out = torch.stack(out, dim=0)
return out[:, :, : -(q + 1)]
def sequence_mask(lengths, max_len=None, **kwargs):
batch_size = lengths.shape[0]
device = lengths.device
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
mask = ids < lengths.unsqueeze(1).expand(-1, max_len)
return mask
|