Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,455 Bytes
56cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import json
from pathlib import Path
from typing import Any
import numpy as np
import torch
from safetensors.torch import load_file
from torch import nn
from tqdm import tqdm
from tts.model.config import TTSConfig
from tts.model.prediction_head import (ContinuousHead, LogitsHead,
StopPredictionHead, VelocityHead)
from tts.model.registry import DECODER_REGISTRY, ENCODER_REGISTRY
from tts.tools import path_matrix, widen_alignment
def collect_heads(cache, selected_heads, last=True):
if last:
return torch.cat(
[
cache[layer]["crossatt_weights"][:, [head], -1]
for layer, head in selected_heads
],
dim=1,
)[:, :, None]
else:
return torch.cat(
[
cache[layer]["crossatt_weights"][:, [head]]
for layer, head in selected_heads
],
dim=1,
)
def mask_from_abs_pos(abs_pos, text_len, expand_factor, width=(5, 1)):
exp_ca_mask = path_matrix(abs_pos, text_len)
exp_ca_mask = widen_alignment(exp_ca_mask, width=width, axis="S")
exp_ca_mask = expand(exp_ca_mask, expand_factor)
return exp_ca_mask
def expand(x, r):
b, n, d = x.shape
x = x.unsqueeze(-1).repeat(1, 1, 1, r).reshape(b, n, r * d)
return x
class ARTTSModel(nn.Module):
def __init__(self, cfg: TTSConfig):
super().__init__()
self.text_embd = nn.Embedding(cfg.text_vocab_size, cfg.dim)
if cfg.audio_input_type == "discrete":
self.audio_embd = nn.Embedding(cfg.audio_vocab_size, cfg.dim)
self.prediction_head = LogitsHead(cfg.decoder_cfg.dim, cfg.audio_vocab_size)
elif cfg.audio_input_type == "continuous" and cfg.continuous_diffusion:
self.audio_embd = nn.Linear(cfg.audio_embed_size, cfg.dim)
self.prediction_head = VelocityHead(
cfg.decoder_cfg.dim,
cfg.audio_embed_size,
cfg.diffusion_head_num_layers,
)
elif cfg.audio_input_type == "continuous":
self.audio_embd = nn.Linear(cfg.audio_embed_size, cfg.dim)
self.prediction_head = ContinuousHead(
cfg.decoder_cfg.dim,
cfg.audio_embed_size,
)
self.text_encoder = ENCODER_REGISTRY[cfg.encoder_cfg.name](cfg.encoder_cfg)
self.audio_decoder = DECODER_REGISTRY[cfg.decoder_cfg.name](cfg.decoder_cfg)
self.stop_token_embd = None
self.stop_prediction_head = None
if cfg.stop_prediction_head:
if cfg.stop_token_embd:
self.stop_token_embd = nn.Embedding(2, cfg.dim, padding_idx=0)
self.stop_prediction_head = StopPredictionHead(cfg.dim)
if cfg.num_sink_tokens > 0:
self.sink_tokens = nn.Parameter(
torch.randn(cfg.num_sink_tokens, cfg.dim) * 0.02, requires_grad=True
)
else:
self.sink_tokens = None
self.disabled_crossatt_head_idx = cfg.disabled_crossatt_head_idx
@property
def num_sink_tokens(self):
if self.sink_tokens is None:
return 0
else:
n_sink, _ = self.sink_tokens.shape
return n_sink
@classmethod
def instantiate_from_config(cls, config):
for k in config.keys():
if k == "decoder_cfg":
config[k] = DECODER_REGISTRY[config[k]["name"]].config(**config[k])
if k == "encoder_cfg":
config[k] = ENCODER_REGISTRY[config[k]["name"]].config(**config[k])
config = TTSConfig(**config)
return ARTTSModel(config), config
@classmethod
def from_pretrained_local(
cls,
path: str,
config_filename: str = "config.json",
model_filename: str = "model.st",
device: str = "cpu",
):
with open(Path(path) / config_filename, "r") as f:
config = json.load(f)
model, config = cls.instantiate_from_config(config)
state_dict = load_file(Path(path) / model_filename, device=device)
model.load_state_dict(state_dict)
return model
def _get_query(self, x: torch.Tensor, *args):
input_audio_embd = self.audio_embd(x)
return self.audio_decoder._get_query(input_audio_embd, *args)
def forward(
self,
text_ids: torch.LongTensor,
audio_inputs: torch.Tensor,
text_mask: torch.Tensor | None = None,
audio_mask: torch.Tensor | None = None,
stop_tokens: torch.Tensor | None = None,
text_stop_tokens: torch.Tensor | None = None,
text_rel_pos: torch.Tensor | None = None,
crossatt_mask: torch.Tensor | None = None,
crossatt_rel_pos: torch.Tensor | None = None,
n_first_layers: int | None = None,
cache: Any | None = None,
):
input_text_embd = self.text_embd(text_ids)
input_audio_embd = self.audio_embd(audio_inputs[:, :-1])
if self.stop_token_embd is not None:
if stop_tokens is not None:
stop_tokens_embd = self.stop_token_embd(stop_tokens)
input_audio_embd += stop_tokens_embd[:, :-1]
text_hidden_states = self.text_encoder(
input_text_embd,
mask=text_mask,
text_rel_pos=text_rel_pos,
)
if self.disabled_crossatt_head_idx is not None and crossatt_mask is not None:
crossatt_mask_list = []
n_sink, _ = self.sink_tokens.shape
for layer in self.audio_decoder.decoder_layers:
if layer.crossatt is not None:
h = layer.crossatt.heads
crossatt_layer_mask = (
crossatt_mask.unsqueeze(1).repeat(1, h, 1, 1).clone()
)
crossatt_layer_mask = torch.nn.functional.pad(
crossatt_layer_mask,
(n_sink, 0),
value=True,
)
crossatt_mask_list.append(crossatt_layer_mask[:, :, :-1])
else:
crossatt_mask_list.append(None)
for layer, head in self.disabled_crossatt_head_idx:
crossatt_mask_list[layer][:, head, :, n_sink:] = False
crossatt_mask = crossatt_mask_list
else:
if self.sink_tokens is not None:
n_sink, _ = self.sink_tokens.shape
if crossatt_mask is not None:
crossatt_mask = torch.nn.functional.pad(
crossatt_mask,
(n_sink, 0),
value=True,
)
crossatt_mask = crossatt_mask[:, :-1]
if self.sink_tokens is not None:
sink_tokens = self.sink_tokens[None, :].repeat(
text_hidden_states.shape[0], 1, 1
)
text_hidden_states = torch.cat(
(sink_tokens, text_hidden_states),
dim=1,
)
if n_first_layers is not None:
pre_logits = self.audio_decoder.forward_first_n_layers(
text_hidden_states,
input_audio_embd,
n_first_layers,
crossatt_mask=crossatt_mask,
)
else:
pre_logits = self.audio_decoder(
text_hidden_states,
input_audio_embd,
crossatt_mask=crossatt_mask,
cache=cache,
)
return pre_logits
def generate(
self,
text_ids: torch.LongTensor,
prefix: torch.Tensor,
text_mask: torch.Tensor | None = None,
crossatt_mask: torch.Tensor | None = None,
text_rel_pos: torch.LongTensor | None = None,
teacher_force: torch.Tensor | None = None,
unfold_ref: bool = False,
max_seq_len: int = 200,
device: str = "cuda",
sampling_params: dict | None = None,
stop_threshold: float = 0.5,
cache: Any | None = None,
do_not_stop: bool = False,
):
if sampling_params is None:
sampling_params = {}
if text_ids.ndim == 1:
text_ids = text_ids.unsqueeze(0)
batch_size = text_ids.shape[0]
input_text_embd = self.text_embd(text_ids)
text_hidden_states = self.text_encoder(
input_text_embd,
text_rel_pos=text_rel_pos,
mask=text_mask,
)
prefix_embd = self.audio_embd(prefix)
if self.sink_tokens is not None:
sink_tokens = self.sink_tokens[None, :].repeat(
text_hidden_states.shape[0], 1, 1
)
text_hidden_states = torch.cat(
(sink_tokens, text_hidden_states),
dim=1,
)
if crossatt_mask is not None:
n_sink, _ = self.sink_tokens.shape
crossatt_mask = torch.nn.functional.pad(
crossatt_mask,
(n_sink, 0),
value=True,
)
if cache is None:
cache = self.audio_decoder.init_cache(
max_seq_len + prefix_embd.shape[1], device
)
stop_status = torch.zeros(batch_size, device=device).bool()
stop_idx = torch.ones(batch_size, device=device).long()*max_seq_len
preds = []
pre_prediction = self.audio_decoder.prefill(
text_hidden_states,
prefix_embd,
cache=cache,
)
prediction = self.prediction_head.predict(
pre_prediction[:, [-1]], **sampling_params
)
prediction_embd = self.audio_embd(prediction)
for i in tqdm(range(max_seq_len)):
pre_prediction = self.audio_decoder.decode_one(
text_hidden_states,
prediction_embd,
cache,
crossatt_mask=crossatt_mask,
)
if unfold_ref:
pre_prediction, pre_prediction_ref = pre_prediction.chunk(2)
else:
pre_prediction_ref = None
prediction = self.prediction_head.predict(pre_prediction,
pre_prediction_ref=pre_prediction_ref,
**sampling_params,)
prediction_embd = self.audio_embd(prediction)
if unfold_ref:
prediction_embd = prediction_embd.repeat(2, 1, 1)
if teacher_force is not None:
b, n, d = teacher_force.shape
if i < n:
prediction_embd = self.audio_embd(teacher_force[:, [i]])
preds.append(prediction)
if self.stop_prediction_head is not None:
stop_pred = self.stop_prediction_head(pre_prediction).squeeze(1,2)
stop_signal = stop_pred > stop_threshold
stop_status += stop_signal
stop_idx[stop_signal * stop_idx > i] = i
if stop_status.prod():
if self.stop_token_embd is not None:
st_embd = self.stop_token_embd(
torch.ones(1, 1, device=device).int()
)
prediction_embd += st_embd
if not do_not_stop:
break
else:
print(f"STOP: {i}")
full_prediction = torch.cat(preds, dim=1)
full_prediction = [x[:stop_idx[i]][None] for i, x in enumerate(full_prediction.unbind())]
return cache, full_prediction
"""
def generate_with_playhead(
self,
text_ids: torch.LongTensor,
prefix: torch.Tensor,
playhead_model: PlayHead,
selected_heads_idx: list[tuple[int, int]],
text_stop_tokens: torch.LongTensor | None = None,
text_mask: torch.Tensor | None = None,
text_rel_pos: torch.LongTensor | None = None,
teacher_force: torch.Tensor | None = None,
max_seq_len: int = 200,
device: str = "cuda",
sampling_params: dict | None = None,
stop_threshold: float = 0.5,
do_not_stop: bool = False,
width: tuple[int, int] = (5, 1),
abs_pos_start: int = 0,
stop_end_distance_threshold: int = 5,
):
if sampling_params is None:
sampling_params = {}
if text_ids.ndim == 1:
text_ids = text_ids.unsqueeze(0)
input_text_embd = self.text_embd(text_ids)
if self.text_stop_token_embd is not None:
if text_stop_tokens is not None:
text_stop_tokens_embd = self.text_stop_token_embd(text_stop_tokens)
input_text_embd += text_stop_tokens_embd
text_hidden_states = self.text_encoder(
input_text_embd,
text_rel_pos=text_rel_pos,
mask=text_mask,
)
prefix_embd = self.audio_embd(prefix)
text_len = text_hidden_states.shape[1]
if self.sink_tokens is not None:
sink_tokens = self.sink_tokens[None, :].repeat(
text_hidden_states.shape[0], 1, 1
)
text_hidden_states = torch.cat(
(sink_tokens, text_hidden_states),
dim=1,
)
cache = self.audio_decoder.init_cache(max_seq_len, device)
preds = []
pre_prediction = self.audio_decoder.prefill(
text_hidden_states,
prefix_embd,
cache=cache,
)
text_freqs = None
prediction = self.prediction_head.predict(
pre_prediction[:, [-1]], **sampling_params
)
prediction_embd = self.audio_embd(prediction)
preds.append(prediction)
playhead_cache = playhead_model.init_cache()
previous_position = torch.zeros(1, device=device)
abs_pos = torch.ones(1, 1, device=device).long() * abs_pos_start
selected_heads_frame = collect_heads(cache, selected_heads_idx, last=False)
selected_heads_frame = selected_heads_frame.sum(1).transpose(-1, -2)
pos_preds = []
steps = []
expand_crossatt_mask = []
for i in tqdm(range(selected_heads_frame.shape[2])):
pred, step = playhead_model.predict(
selected_heads_frame[..., [i]],
cache=playhead_cache,
previous_position=previous_position,
)
previous_position = pred
abs_pos += step
pos_preds.append(pred)
steps.append(step)
exp_ca_mask = mask_from_abs_pos(
abs_pos,
(text_len // playhead_model.avg_pool_stride) + 1,
playhead_model.avg_pool_stride,
width=width,
)
exp_ca_mask = torch.nn.functional.pad(
exp_ca_mask, (self.num_sink_tokens, 0), value=True
).bool()[..., : text_len + self.num_sink_tokens]
expand_crossatt_mask.append(exp_ca_mask)
print("starting at: ", abs_pos.item())
# pos_pred, step = playhead_model.predict(
# selected_heads_frame,
# cache=playhead_cache,
# previous_position=previous_position,
# )
# previous_position = pos_pred[:, [-1]]
# abs_pos += step
# exp_ca_mask = mask_from_abs_pos(
# abs_pos,
# (text_len // playhead_model.avg_pool_stride) + 1,
# playhead_model.avg_pool_stride,
# width=width,
# )
# expand_crossatt_mask.append(exp_ca_mask)
# steps.append(step)
# pos_preds.append(pos_pred)
progress_bar = tqdm(range(max_seq_len))
for i in progress_bar:
pre_prediction = self.audio_decoder.decode_one(
text_hidden_states,
prediction_embd,
cache,
# text_freqs=text_freqs,
crossatt_mask=exp_ca_mask,
)
prediction = self.prediction_head.predict(pre_prediction, **sampling_params)
prediction_embd = self.audio_embd(prediction)
if teacher_force is not None:
b, n, d = teacher_force.shape
if i < n:
prediction_embd = self.audio_embd(teacher_force[:, [i]])
### PLAYHEAD ========================
selected_heads_frame = (
collect_heads(cache, selected_heads_idx).sum(1).transpose(-1, -2)
)
pos_pred, step = playhead_model.predict(
selected_heads_frame,
cache=playhead_cache,
previous_position=previous_position,
)
previous_position = pos_pred
abs_pos += step
exp_ca_mask = mask_from_abs_pos(
abs_pos,
(text_len // playhead_model.avg_pool_stride) + 1,
playhead_model.avg_pool_stride,
width=width,
)
exp_ca_mask = torch.nn.functional.pad(
exp_ca_mask, (self.num_sink_tokens, 0), value=True
).bool()[..., : text_len + self.num_sink_tokens]
expand_crossatt_mask.append(exp_ca_mask)
steps.append(step)
pos_preds.append(pos_pred)
# =================================
preds.append(prediction)
if self.stop_prediction_head is not None:
stop_pred = self.stop_prediction_head(pre_prediction)
if stop_pred > stop_threshold:
dist = np.abs(
abs_pos.cpu().item() * playhead_model.avg_pool_stride - text_len
)
progress_bar.set_postfix(
{"stop": f"pos: {abs_pos.cpu().item()}; dist{dist}"}
)
if dist < stop_end_distance_threshold and not do_not_stop:
break
progress_bar.set_postfix({"position": abs_pos.cpu().item()})
full_prediction = torch.cat(preds, dim=1)
expand_crossatt_mask = torch.cat(expand_crossatt_mask, dim=1)
print(expand_crossatt_mask.shape)
return cache, full_prediction, expand_crossatt_mask, steps, pos_preds
"""
|