Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,462 Bytes
56cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
#!/usr/bin/env python3
import argparse
import json
import os
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Any, Tuple
import torch
from torchaudio import load as ta_load
from torchaudio.functional import resample as ta_resample
import torchaudio
# Your libs
from zcodec.models import WavVAE, ZFlowAutoEncoder
# -------------------------
# Data structures
# -------------------------
@dataclass
class DecodeParams:
num_steps: int = 10
cfg: float = 2.0
@dataclass
class ModelPairSpec:
name: str
wavvae_dir: str
zflowae_dir: str
decode: DecodeParams
# -------------------------
# Utilities
# -------------------------
def load_json_if_exists(path: Path) -> Optional[Dict[str, Any]]:
if path.is_file():
try:
with path.open("r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return None
return None
def read_config_any(checkpoint_dir: str) -> Dict[str, Any]:
"""
Try to read config.json (or a few common fallbacks) from a checkpoint dir.
Returns {} if nothing could be parsed.
"""
cand = [
Path(checkpoint_dir) / "config.json",
Path(checkpoint_dir)
/ "config.yaml", # won't parse yaml here, we only display path
Path(checkpoint_dir) / "model_config.json",
]
for p in cand:
if p.exists():
if p.suffix == ".json":
j = load_json_if_exists(p)
if j is not None:
return j
else:
# For YAML or unknown, just show filename rather than failing
return {"_config_file": str(p)}
return {}
def sanitize_name(s: str) -> str:
return "".join(c if c.isalnum() or c in "-_." else "_" for c in s)
def ensure_mono_and_resample(
wav: torch.Tensor, sr: int, target_sr: int
) -> Tuple[torch.Tensor, int]:
"""
wav: (channels, samples)
returns mono float32 in [-1,1], resampled to target_sr
"""
if wav.ndim != 2:
raise ValueError(f"Expected 2D waveform (C, T), got shape {tuple(wav.shape)}")
# to mono
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
# resample if needed
if sr != target_sr:
wav = ta_resample(wav, sr, target_sr)
sr = target_sr
return wav.to(torch.float32), sr
def save_wav(path: Path, wav: torch.Tensor, sr: int):
path.parent.mkdir(parents=True, exist_ok=True)
# (C, T)
if wav.ndim == 1:
wav = wav.unsqueeze(0)
# Clamp to [-1,1]
wav = wav.clamp(-1, 1).contiguous().cpu()
torchaudio.save(
str(path), wav, sample_rate=sr, encoding="PCM_S", bits_per_sample=16
)
# -------------------------
# Core inference
# -------------------------
@torch.inference_mode()
def reconstruct_full_pipeline(
wav_mono: torch.Tensor,
sr: int,
wavvae: WavVAE,
zflowae: ZFlowAutoEncoder,
decode_params: DecodeParams,
device: str,
) -> torch.Tensor:
"""
Full path: audio -> WavVAE.encode -> ZFlowAE.encode -> ZFlowAE.decode -> WavVAE.decode -> audio_hat
"""
wav_mono = wav_mono.to(device)
# WavVAE expects (B, C, T); assume C=1
x = wav_mono.unsqueeze(0) # (1, 1, T)
# Encode to high-framerate latents
z = wavvae.encode(x)
# Compress latents
y = zflowae.encode(z)
# Decompress
z_hat = zflowae.decode(y, num_steps=decode_params.num_steps, cfg=decode_params.cfg)
# Decode to waveform
wav_hat = wavvae.decode(z_hat) # (1, 1, T)
# Return mono 1D
return wav_hat.squeeze(0).squeeze(0).detach()
def load_model_pair(spec: ModelPairSpec, device: str):
wavvae = WavVAE.from_pretrained_local(spec.wavvae_dir).to(device)
zflowae = ZFlowAutoEncoder.from_pretrained_local(spec.zflowae_dir).to(device)
# try to get sampling rate from WavVAE
target_sr = getattr(wavvae, "sampling_rate", None)
if target_sr is None:
# reasonable fallback
target_sr = 24000
return wavvae, zflowae, int(target_sr)
def parse_manifest(path: str) -> List[ModelPairSpec]:
"""
Manifest format (JSON list):
[
{
"name": "zdim32x8",
"wavvae": "/path/to/WavVAE_framerate100_zdim32/",
"zflowae": "/path/to/ZFlowAutoEncoder_stride4_zdim32_vae8_.../",
"decode": {"num_steps": 10, "cfg": 2.0}
}
]
"""
with open(path, "r", encoding="utf-8") as f:
raw = json.load(f)
out: List[ModelPairSpec] = []
for item in raw:
name = item["name"]
wavvae_dir = item["wavvae"]
zflowae_dir = item["zflowae"]
d = item.get("decode", {})
out.append(
ModelPairSpec(
name=name,
wavvae_dir=wavvae_dir,
zflowae_dir=zflowae_dir,
decode=DecodeParams(
num_steps=int(d.get("num_steps", 10)),
cfg=float(d.get("cfg", 2.0)),
),
)
)
return out
# -------------------------
# HTML generation
# -------------------------
def html_escape(s: str) -> str:
return (
s.replace("&", "&")
.replace("<", "<")
.replace(">", ">")
.replace('"', """)
.replace("'", "'")
)
def make_html(
output_dir: Path,
audio_files: List[Path],
models: List[ModelPairSpec],
sr_by_model: Dict[str, int],
wavvae_cfg: Dict[str, Dict[str, Any]],
zflow_cfg: Dict[str, Dict[str, Any]],
) -> str:
"""
Build a static HTML page with a table:
Row = input audio file
Col 1 = Original
Col 2..N = each model reconstruction
Also shows minimal model config info above the table.
"""
def player(src_rel: str, controls: bool = True) -> str:
return f'<audio {"controls" if controls else ""} preload="none" src="{html_escape(src_rel)}"></audio>'
# Model cards
model_cards = []
for spec in models:
wcfg = wavvae_cfg.get(spec.name, {})
zcfg = zflow_cfg.get(spec.name, {})
w_short = json.dumps(wcfg if wcfg else {"_": "no JSON config found"}, indent=2)[
:1200
]
z_short = json.dumps(zcfg if zcfg else {"_": "no JSON config found"}, indent=2)[
:1200
]
card = f"""
<div class="model-card">
<h3>{html_escape(spec.name)}</h3>
<p><b>Sample rate</b>: {sr_by_model.get(spec.name, "N/A")} Hz</p>
<details>
<summary>WavVAE config</summary>
<pre>{html_escape(w_short)}</pre>
</details>
<details>
<summary>ZFlowAE config</summary>
<pre>{html_escape(z_short)}</pre>
</details>
<p><b>Decode</b>: num_steps={spec.decode.num_steps}, cfg={spec.decode.cfg}</p>
</div>
"""
model_cards.append(card)
# Table header
th = "<th>Input</th><th>Original</th>" + "".join(
f"<th>{html_escape(m.name)}</th>" for m in models
)
# Rows
rows = []
for af in audio_files:
base = af.stem
orig_rel = f"original/{html_escape(af.name)}"
tds = [f"<td>{html_escape(base)}</td>", f"<td>{player(orig_rel)}</td>"]
for m in models:
rec_rel = f"recon/{html_escape(m.name)}/{html_escape(base)}.wav"
tds.append(f"<td>{player(rec_rel)}</td>")
rows.append("<tr>" + "".join(tds) + "</tr>")
# Simple CSS to keep it clean
css = """
body { font-family: system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, sans-serif; padding: 20px; }
h1 { margin-bottom: 0.2rem; }
.cards { display: grid; grid-template-columns: repeat(auto-fill, minmax(320px, 1fr)); gap: 12px; margin-bottom: 18px; }
.model-card { border: 1px solid #ddd; border-radius: 12px; padding: 12px; }
table { border-collapse: collapse; width: 100%; }
th, td { border: 1px solid #eee; padding: 8px; vertical-align: top; }
th { background: #fafafa; position: sticky; top: 0; }
audio { width: 260px; }
"""
html = f"""<!doctype html>
<html>
<head>
<meta charset="utf-8"/>
<title>Codec Comparison</title>
<style>{css}</style>
</head>
<body>
<h1>Codec Comparison</h1>
<p>This page compares reconstructions across model checkpoints. Click play in each cell.</p>
<h2>Models</h2>
<div class="cards">
{"".join(model_cards)}
</div>
<h2>Audio</h2>
<table>
<thead><tr>{th}</tr></thead>
<tbody>
{"".join(rows)}
</tbody>
</table>
</body>
</html>
"""
out = output_dir / "index.html"
out.write_text(html, encoding="utf-8")
return str(out)
# -------------------------
# Main
# -------------------------
def main():
p = argparse.ArgumentParser(
description="Compare Z-Codec configurations and generate a static HTML page."
)
p.add_argument(
"--manifest",
type=str,
required=True,
help="JSON file listing model pairs. See docstring in parse_manifest().",
)
p.add_argument(
"--audio", type=str, nargs="+", required=True, help="List of input audio files."
)
p.add_argument(
"--out",
type=str,
default="codec_compare_out",
help="Output directory for reconstructions and HTML.",
)
p.add_argument(
"--device",
type=str,
default="cuda",
help="Device to run inference on (cuda or cpu).",
)
p.add_argument(
"--force",
action="store_true",
help="Recompute even if target wav already exists.",
)
args = p.parse_args()
device = "cuda" if args.device == "cuda" and torch.cuda.is_available() else "cpu"
out_dir = Path(args.out)
orig_dir = out_dir / "original"
recon_dir = out_dir / "recon"
orig_dir.mkdir(parents=True, exist_ok=True)
recon_dir.mkdir(parents=True, exist_ok=True)
# Parse models
specs = parse_manifest(args.manifest)
if not specs:
print("No models in manifest.", file=sys.stderr)
sys.exit(1)
# Load models
loaded: Dict[str, Dict[str, Any]] = {}
sr_by_model: Dict[str, int] = {}
wavvae_cfg: Dict[str, Dict[str, Any]] = {}
zflow_cfg: Dict[str, Dict[str, Any]] = {}
for spec in specs:
print(f"[Load] {spec.name}")
wavvae, zflowae, target_sr = load_model_pair(spec, device)
loaded[spec.name] = {"wavvae": wavvae, "zflowae": zflowae, "sr": target_sr}
sr_by_model[spec.name] = target_sr
wavvae_cfg[spec.name] = read_config_any(spec.wavvae_dir)
zflow_cfg[spec.name] = read_config_any(spec.zflowae_dir)
# Process audio files
audio_files = [Path(a) for a in args.audio]
for af in audio_files:
if not af.exists():
print(f"[Skip] Missing: {af}", file=sys.stderr)
continue
# copy original (resampled per model? We'll store original as-is)
# Just place the original file for direct playback
# If it's not wav, we still copy a WAV version for compatibility.
# But simplest: if not wav, we re-save as wav 16-bit for the page.
out_orig = orig_dir / af.name
if args.force or not out_orig.exists():
# Load and resave as wav to ensure browser-compat
wav, sr = ta_load(str(af))
# make it mono for fair listening
wav_mono, sr = ensure_mono_and_resample(wav, sr, sr)
save_wav(out_orig.with_suffix(".wav"), wav_mono, sr)
# keep the name consistent in the HTML (use .wav)
af = af.with_suffix(".wav")
# rename saved file to matched name
if out_orig.suffix != ".wav":
# Clean: ensure HTML references the .wav filename
out_orig = out_orig.with_suffix(".wav")
# For each model, run full pipeline and save
base = af.stem
# Re-load from disk to ensure consistent start-point (original .wav in out folder)
wav0, sr0 = ta_load(str(out_orig if out_orig.exists() else orig_dir / af.name))
# Make mono only once; resample per-model to each target SR
if wav0.size(0) > 1:
wav0 = wav0.mean(dim=0, keepdim=True)
for spec in specs:
mname = spec.name
target_sr = sr_by_model[mname]
# resample to model's SR
if sr0 != target_sr:
wav_mono = ta_resample(wav0, sr0, target_sr)
else:
wav_mono = wav0
# reconstruct
out_path = recon_dir / mname / f"{sanitize_name(base)}.wav"
if args.force or not out_path.exists():
print(f"[Reconstruct] {mname} ← {base}")
wavvae = loaded[mname]["wavvae"]
zflowae = loaded[mname]["zflowae"]
wav_hat = reconstruct_full_pipeline(
wav_mono, target_sr, wavvae, zflowae, spec.decode, device
)
save_wav(out_path, wav_hat.unsqueeze(0), target_sr)
# Build HTML
# Rebuild the list of files actually present in original/ (use .wav names)
actual_audio = sorted([p for p in (orig_dir).glob("*.wav")])
html_path = make_html(
out_dir,
actual_audio,
specs,
sr_by_model,
wavvae_cfg,
zflow_cfg,
)
print(f"\nDone. Open: {html_path}")
if __name__ == "__main__":
main()
|