File size: 11,397 Bytes
56cfa73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import json
import math
from dataclasses import asdict
from pathlib import Path
from typing import Optional

import pytorch_lightning as pl
import torch
import transformers
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.cli import LightningCLI
from pytorch_lightning.loggers.wandb import WandbLogger
from safetensors.torch import save_file
from torch.nn.utils import clip_grad_norm_

from codec.models import WavVAE, WavVAEConfig
from codec.models.wavvae.discriminators import (MultiPeriodDiscriminator,
                                                MultiResolutionDiscriminator)
from codec.models.wavvae.loss import (DiscriminatorLoss, FeatureMatchingLoss,
                                       GeneratorLoss,
                                       MelSpecReconstructionLoss)


class TrainWavVAE(pl.LightningModule):
    def __init__(
        self,
        config: WavVAEConfig,
        sample_rate: int,
        initial_learning_rate: float,
        num_warmup_steps: int = 0,
        mel_loss_coeff: float = 45,
        mrd_loss_coeff: float = 1.0,
        kl_div_coeff: float = 1e-5,
        pretrain_mel_steps: int = 0,
        decay_mel_coeff: bool = False,
        clip_grad_norm: float | None = None,
        f_min: int = 0,
        f_max: Optional[int] = None,
        mrd_fft_sizes: tuple[int, int, int] = (2048, 1024, 512),
        mel_hop_length: int = 256,
        log_audio_every_n_epoch: int = 5,
        log_n_audio_batches: int = 32,
    ):
        super().__init__()

        self.save_hyperparameters()
        self.wavvae = WavVAE(config)
        self.multiperioddisc = MultiPeriodDiscriminator()
        self.multiresddisc = MultiResolutionDiscriminator(
            fft_sizes=tuple(mrd_fft_sizes)
        )

        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()
        self.feat_matching_loss = FeatureMatchingLoss()
        self.melspec_loss = MelSpecReconstructionLoss(
            sample_rate=sample_rate,
            f_min=f_min,
            f_max=f_max,
            hop_length=mel_hop_length,
        )

        self.train_discriminator = False
        self.automatic_optimization = False
        self.base_mel_coeff = self.mel_loss_coeff = mel_loss_coeff

    def save_model_weights_and_config(
        self,
        dir: str | None,
        model_filename: str = "model.st",
        config_filename: str = "config.json",
    ):
        cfg = self.hparams.config
        model_path = Path(dir) / model_filename
        save_file(self.wavvae.state_dict(), model_path)
        with open(Path(dir) / config_filename, "w") as f:
            json.dump(asdict(cfg), f, indent=2)

    def configure_optimizers(self):
        disc_params = [
            {"params": self.multiperioddisc.parameters()},
            {"params": self.multiresddisc.parameters()},
        ]
        gen_params = [
            {"params": self.wavvae.parameters()},
        ]

        opt_disc = torch.optim.AdamW(
            disc_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9)
        )
        opt_gen = torch.optim.AdamW(
            gen_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9)
        )

        max_steps = self.trainer.max_steps // 2
        scheduler_disc = transformers.get_cosine_schedule_with_warmup(
            opt_disc,
            num_warmup_steps=self.hparams.num_warmup_steps,
            num_training_steps=max_steps,
        )
        scheduler_gen = transformers.get_cosine_schedule_with_warmup(
            opt_gen,
            num_warmup_steps=self.hparams.num_warmup_steps,
            num_training_steps=max_steps,
        )

        return (
            [opt_disc, opt_gen],
            [
                {"scheduler": scheduler_disc, "interval": "step"},
                {"scheduler": scheduler_gen, "interval": "step"},
            ],
        )

    def forward(self, audio_input, **kwargs):
        audio_output, kl_div = self.wavvae(audio_input)

        return audio_output, kl_div

    def training_step(self, batch, batch_idx, **kwargs):
        audio_input = batch

        opt_disc, opt_gen = self.optimizers()

        if self.train_discriminator:
            with torch.no_grad():
                audio_hat, kl_div = self(audio_input, **kwargs)

            real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(
                y=audio_input,
                y_hat=audio_hat,
                **kwargs,
            )
            real_score_mrd, gen_score_mrd, _, _ = self.multiresddisc(
                y=audio_input,
                y_hat=audio_hat,
                **kwargs,
            )
            loss_mp, loss_mp_real, _ = self.disc_loss(
                disc_real_outputs=real_score_mp, disc_generated_outputs=gen_score_mp
            )
            loss_mrd, loss_mrd_real, _ = self.disc_loss(
                disc_real_outputs=real_score_mrd, disc_generated_outputs=gen_score_mrd
            )
            loss_mp /= len(loss_mp_real)
            loss_mrd /= len(loss_mrd_real)
            loss_disc = loss_mp + self.hparams.mrd_loss_coeff * loss_mrd

            self.log("discriminator/total", loss_disc, prog_bar=True)
            self.log("discriminator/multi_period_loss", loss_mp)
            self.log("discriminator/multi_res_loss", loss_mrd)

            opt_disc.zero_grad()
            self.manual_backward(loss_disc)
            if self.hparams.clip_grad_norm is not None:
                max_norm = self.hparams.clip_grad_norm
                clip_grad_norm_(self.multiperioddisc.parameters(), max_norm=max_norm)
                clip_grad_norm_(self.multiresddisc.parameters(), max_norm=max_norm)
            opt_disc.step()

        audio_hat, kl_div = self(audio_input, **kwargs)
        if self.train_discriminator:
            _, gen_score_mp, fmap_rs_mp, fmap_gs_mp = self.multiperioddisc(
                y=audio_input,
                y_hat=audio_hat,
                **kwargs,
            )
            _, gen_score_mrd, fmap_rs_mrd, fmap_gs_mrd = self.multiresddisc(
                y=audio_input,
                y_hat=audio_hat,
                **kwargs,
            )
            loss_gen_mp, list_loss_gen_mp = self.gen_loss(disc_outputs=gen_score_mp)
            loss_gen_mrd, list_loss_gen_mrd = self.gen_loss(disc_outputs=gen_score_mrd)
            loss_gen_mp = loss_gen_mp / len(list_loss_gen_mp)
            loss_gen_mrd = loss_gen_mrd / len(list_loss_gen_mrd)
            loss_fm_mp = self.feat_matching_loss(
                fmap_r=fmap_rs_mp, fmap_g=fmap_gs_mp
            ) / len(fmap_rs_mp)
            loss_fm_mrd = self.feat_matching_loss(
                fmap_r=fmap_rs_mrd, fmap_g=fmap_gs_mrd
            ) / len(fmap_rs_mrd)

            self.log("generator/multi_period_loss", loss_gen_mp)
            self.log("generator/multi_res_loss", loss_gen_mrd)
            self.log("generator/feature_matching_mp", loss_fm_mp)
            self.log("generator/feature_matching_mrd", loss_fm_mrd)

            self.log("generator/kl_div", kl_div)

            mel_loss = self.melspec_loss(audio_hat, audio_input)
            loss = (
                loss_gen_mp
                + self.hparams.mrd_loss_coeff * loss_gen_mrd
                + loss_fm_mp
                + self.hparams.mrd_loss_coeff * loss_fm_mrd
                + self.mel_loss_coeff * mel_loss
                + self.hparams.kl_div_coeff * kl_div
            )

            self.log("generator/total_loss", loss, prog_bar=True)
            self.log("mel_loss_coeff", self.mel_loss_coeff)
            self.log("generator/mel_loss", mel_loss)

            opt_gen.zero_grad()
            self.manual_backward(loss)
            if self.hparams.clip_grad_norm is not None:
                max_norm = self.hparams.clip_grad_norm
                clip_grad_norm_(self.wavvae.parameters(), max_norm=max_norm)
            opt_gen.step()

    def validation_step(self, batch, batch_idx, **kwargs):
        audio_input = batch
        audio_hat, _ = self(audio_input, **kwargs)

        if self.current_epoch % self.hparams.log_audio_every_n_epoch == 0:
            wavs = [x.numpy(force=True) for x in audio_hat.unbind(0)]
            if batch_idx == 0:
                self._audios_to_log = wavs
            if batch_idx < self.hparams.log_n_audio_batches:
                self._audios_to_log += wavs
            elif batch_idx == self.hparams.log_n_audio_batches:
                self.logger.log_audio(
                    "audio",
                    self._audios_to_log,
                    step=self.global_step,
                    sample_rate=[
                        self.wavvae.sampling_rate
                        for _ in range(len(self._audios_to_log))
                    ],
                )

        mel_loss = self.melspec_loss(audio_hat.unsqueeze(1), audio_input.unsqueeze(1))
        total_loss = mel_loss

        return {
            "val_loss": total_loss,
            "mel_loss": mel_loss,
            "audio_input": audio_input[0],
            "audio_pred": audio_hat[0],
        }

    @property
    def global_step(self):
        """
        Override global_step so that it returns the total number of batches processed
        """
        return self.trainer.fit_loop.epoch_loop.total_batch_idx

    def on_train_batch_start(self, *args):
        if self.global_step >= self.hparams.pretrain_mel_steps:
            self.train_discriminator = True
        else:
            self.train_discriminator = False

    def on_train_batch_end(self, *args):
        def mel_loss_coeff_decay(current_step, num_cycles=0.5):
            max_steps = self.trainer.max_steps // 2
            if current_step < self.hparams.num_warmup_steps:
                return 1.0
            progress = float(current_step - self.hparams.num_warmup_steps) / float(
                max(1, max_steps - self.hparams.num_warmup_steps)
            )
            return max(
                0.0,
                0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
            )

        if self.hparams.decay_mel_coeff:
            self.mel_loss_coeff = self.base_mel_coeff * mel_loss_coeff_decay(
                self.global_step + 1
            )

if __name__ == "__main__":
    class WavVAECLI(LightningCLI):
        def after_instantiate_classes(self):
            hparams = self.model.hparams
            kl_factor = "{:.1e}".format(hparams.kl_div_coeff)
            latent_dim = hparams.config["latent_dim"]
            frame_rate = self.model.wavvae.frame_rate
            dataset_name = (
                Path(self.datamodule.train_config.filelist_path).with_suffix("").name
            )

            name = f"WavVAE_kl{kl_factor}_framerate{frame_rate}hz_latentdim{latent_dim}_dataset{dataset_name}"
            
            if self.trainer.logger:
                logger = WandbLogger(
                    log_model=False,
                    project="codec",
                    name=name,
                )
            model_checkpoint_cb = ModelCheckpoint(
                monitor="generator/mel_loss",
                dirpath="checkpoints/wavvae",
                filename=name + "_epoch{epoch:02d}",
                save_last=True,
            )
            self.trainer.callbacks.append(model_checkpoint_cb)

    WavVAECLI(
        save_config_kwargs={"overwrite": True},
        parser_kwargs={"parser_mode": "omegaconf"},
    )