pardi-speech / app.py
mehdi999's picture
Space: preload CPU thread + cache + logs
6d29905
raw
history blame
12.4 kB
import os
import re
import json
import sys
import time
import threading
import traceback
import gradio as gr
import numpy as np
import soundfile as sf
import torch
import spaces
from huggingface_hub import login, snapshot_download
# --------- Environnement / stabilité ----------
os.environ.setdefault("FLA_CONV_BACKEND", "torch") # éviter les kernels Triton
os.environ.setdefault("FLA_USE_FAST_OPS", "0")
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
torch.backends.cuda.matmul.allow_tf32 = True
try:
torch.set_float32_matmul_precision("high")
except Exception:
pass
from pardi_speech import PardiSpeech, VelocityHeadSamplingParams # présent dans ce repo
MODEL_REPO_ID = os.environ.get("MODEL_REPO_ID", "theodorr/pardi-speech-enfr-forbidden")
HF_TOKEN = os.environ.get("HF_TOKEN")
# --------- Cache global (préchargement au démarrage) ----------
_MODEL = {"pardi": None, "sr": 24000, "err": None, "logs": [], "thread": None}
def _log(msg: str):
_MODEL["logs"].append(str(msg))
# borne la taille
if len(_MODEL["logs"]) > 2000:
_MODEL["logs"] = _MODEL["logs"][-2000:]
def _env_diag() -> str:
parts = []
try:
parts.append(f"torch={torch.__version__}")
try:
import triton # type: ignore
parts.append(f"triton={getattr(triton, '__version__', 'unknown')}")
except Exception:
parts.append("triton=not_importable")
parts.append(f"cuda.is_available={torch.cuda.is_available()}")
if torch.cuda.is_available():
parts.append(f"cuda.version={torch.version.cuda}")
try:
free, total = torch.cuda.mem_get_info()
parts.append(f"mem_free={free/1e9:.2f}GB/{total/1e9:.2f}GB")
except Exception:
pass
except Exception as e:
parts.append(f"env_diag_error={e}")
return " | ".join(parts)
def _normalize_text(s: str, lang_hint: str = "fr") -> str:
s = (s or "").strip()
try:
import re as _re
from num2words import num2words
def repl(m):
try:
return num2words(int(m.group()), lang=lang_hint)
except Exception:
return m.group()
s = _re.sub(r"\d+", repl, s)
except Exception:
pass
return s
def _to_mono_float32(arr: np.ndarray) -> np.ndarray:
arr = np.asarray(arr)
if arr.ndim == 2:
arr = arr.mean(axis=1)
return arr.astype(np.float32)
def _extract_repo_ids_from_config(config_path: str):
repo_ids = set()
preview = None
try:
with open(config_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
pattern = re.compile(r"^[\w\-]+\/[\w\.\-]+$") # org/name
def rec(obj):
if isinstance(obj, dict):
for v in obj.values(): rec(v)
elif isinstance(obj, list):
for v in obj: rec(v)
elif isinstance(obj, str):
if pattern.match(obj): repo_ids.add(obj)
rec(cfg)
try:
subset_keys = list(cfg)[:5] if isinstance(cfg, dict) else []
preview = json.dumps({k: cfg[k] for k in subset_keys}, ensure_ascii=False)[:600]
except Exception:
pass
except Exception:
pass
return sorted(repo_ids), preview
def _prefetch_and_load_cpu():
"""Exécuté dans un thread au démarrage du Space (hors worker GPU)."""
try:
_log("[prefetch] snapshot_download (main)...")
local_dir = snapshot_download(
repo_id=MODEL_REPO_ID,
token=HF_TOKEN,
local_dir=None,
local_files_only=False,
)
_log(f"[prefetch] main done -> {local_dir}")
cfg_path = os.path.join(local_dir, "config.json")
nested, cfg_preview = _extract_repo_ids_from_config(cfg_path)
if cfg_preview:
_log(f"[config] preview: {cfg_preview}")
for rid in nested:
if rid == MODEL_REPO_ID:
continue
_log(f"[prefetch] nested repo: {rid} ...")
snapshot_download(repo_id=rid, token=HF_TOKEN, local_dir=None, local_files_only=False)
_log(f"[prefetch] nested repo: {rid} done")
# Forcer offline pendant le vrai chargement
old_off = os.environ.get("HF_HUB_OFFLINE")
os.environ["HF_HUB_OFFLINE"] = "1"
try:
_log("[load] from_pretrained(map_location='cpu')...")
m = PardiSpeech.from_pretrained(local_dir, map_location="cpu")
m.eval()
_MODEL["pardi"] = m
_MODEL["sr"] = getattr(m, "sampling_rate", 24000)
_log(f"[load] cpu OK (sr={_MODEL['sr']})")
finally:
if old_off is None:
os.environ.pop("HF_HUB_OFFLINE", None)
else:
os.environ["HF_HUB_OFFLINE"] = old_off
except BaseException as e:
_MODEL["err"] = e
_log(f"[EXC@preload] {type(e).__name__}: {e}")
_log(traceback.format_exc())
# Lance le préchargement (hors GPU) dès l’import
if _MODEL["thread"] is None:
_MODEL["thread"] = threading.Thread(target=_prefetch_and_load_cpu, daemon=True)
_MODEL["thread"].start()
def _move_to_cuda_if_available(m, logs_acc):
def L(msg): logs_acc.append(str(msg))
if torch.cuda.is_available():
L("[move] moving model to cuda...")
try:
m = m.to("cuda") # type: ignore[attr-defined]
L("[move] cuda OK")
except Exception as e:
L(f"[move] .to('cuda') failed: {e}. Keeping on CPU.")
else:
L("[move] cuda not available, keep CPU")
return m
# --------- UI callback (GPU) ----------
@spaces.GPU(duration=200)
def synthesize(
text: str,
debug: bool,
adv_sampling: bool, # Velocity Head sampling
ref_audio,
ref_text: str,
steps: int,
cfg: float,
cfg_ref: float,
temperature: float,
max_seq_len: int,
seed: int,
lang_hint: str,
):
logs = []
def LOG(msg: str):
logs.append(str(msg))
joined = "\n".join(logs + _MODEL["logs"][-50:]) # mêle quelques logs de préchargement
if len(joined) > 12000:
joined = joined[-12000:]
return joined
try:
if HF_TOKEN:
try:
login(token=HF_TOKEN)
yield None, LOG("✅ HF login ok")
except Exception as e:
yield None, LOG(f"⚠️ HF login failed: {e}")
yield None, LOG("[env] " + _env_diag())
torch.manual_seed(int(seed))
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "1")
# Si le modèle n’est pas encore prêt, on attend jusqu’à 180s max ici
t0 = time.perf_counter()
while _MODEL["pardi"] is None and _MODEL["err"] is None:
elapsed = time.perf_counter() - t0
yield None, LOG(f"[init] still loading on CPU… {elapsed:.1f}s")
if elapsed > 180:
# dump de la stack du thread de préchargement pour debug
tid = _MODEL["thread"].ident if _MODEL["thread"] else None
if tid is not None:
frame = sys._current_frames().get(tid)
if frame is not None:
stack_txt = "".join(traceback.format_stack(frame))
yield None, LOG("[stack-final]\n" + stack_txt)
raise TimeoutError("Preload timeout (>180s)")
time.sleep(2.0)
if _MODEL["err"]:
raise _MODEL["err"]
pardi = _MODEL["pardi"]
sr_out = _MODEL["sr"]
# Déplacement vers CUDA si possible
pardi = _move_to_cuda_if_available(pardi, logs)
yield None, LOG(f"[init] model ready on {'cuda' if torch.cuda.is_available() else 'cpu'}, sr={sr_out}")
# ---- Texte + prefix optionnel ----
txt = _normalize_text(text or "", lang_hint=lang_hint)
yield None, LOG(f"[text] {txt[:120]}{'...' if len(txt) > 120 else ''}")
steps = int(min(max(1, int(steps)), 16))
max_seq_len = int(min(max(50, int(max_seq_len)), 600))
prefix = None
if ref_audio is not None:
yield None, LOG("[prefix] encoding reference audio...")
if isinstance(ref_audio, str):
wav, sr = sf.read(ref_audio)
else:
sr, wav = ref_audio
wav = _to_mono_float32(wav)
device = "cuda" if torch.cuda.is_available() else "cpu"
wav_t = torch.from_numpy(wav).to(device).unsqueeze(0)
with torch.inference_mode():
prefix_tokens = pardi.patchvae.encode(wav_t) # type: ignore[attr-defined]
prefix = (ref_text or "", prefix_tokens[0])
yield None, LOG("[prefix] done.")
yield None, LOG(f"[run] has_prefix={prefix is not None}, steps={steps}, cfg={cfg}, cfg_ref={cfg_ref}, "
f"T={temperature}, max_seq_len={max_seq_len}, seed={seed}, adv_sampling={adv_sampling}")
# ---- Chemin rapide (comme le notebook) ----
with torch.inference_mode():
if adv_sampling:
try:
vparams = VelocityHeadSamplingParams(cfg_ref=float(cfg_ref), cfg=float(cfg), num_steps=int(steps))
except TypeError:
vparams = VelocityHeadSamplingParams(cfg_ref=float(cfg_ref), cfg=float(cfg),
num_steps=int(steps), temperature=float(temperature))
wavs, _ = pardi.text_to_speech([txt], prefix, max_seq_len=int(max_seq_len),
velocity_head_sampling_params=vparams)
else:
wavs, _ = pardi.text_to_speech([txt], prefix, max_seq_len=int(max_seq_len))
wav = wavs[0].detach().cpu().numpy().astype(np.float32)
yield (sr_out, wav), LOG("[ok] done.")
except Exception as e:
tb = traceback.format_exc()
yield None, LOG(f"[EXC] {type(e).__name__}: {e}\n{tb}")
# --------- UI ----------
def build_demo():
with gr.Blocks(title="Lina-speech / pardi-speech Demo") as demo:
gr.Markdown(
"### Lina-speech (pardi-speech) – Démo TTS\n"
"Génère de l'audio à partir de texte, avec ou sans prefix (audio de référence).\n"
"Chemin rapide par défaut (comme le notebook)."
)
with gr.Row():
text = gr.Textbox(label="Texte à synthétiser", lines=4, placeholder="Tape ton texte ici…")
with gr.Accordion("Prefix (optionnel)", open=False):
ref_audio = gr.Audio(sources=["upload", "microphone"], type="numpy", label="Audio de référence")
ref_text = gr.Textbox(label="Texte du prefix (si connu)", placeholder="Transcription du prefix (optionnel)")
with gr.Accordion("Options avancées", open=False):
with gr.Row():
steps = gr.Slider(1, 50, value=10, step=1, label="num_steps")
cfg = gr.Slider(0.5, 3.0, value=1.4, step=0.05, label="CFG (guidance)")
cfg_ref = gr.Slider(0.5, 3.0, value=1.0, step=0.05, label="CFG (réf.)")
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.05, label="Température")
max_seq_len = gr.Slider(50, 1200, value=300, step=10, label="max_seq_len (tokens audio)")
seed = gr.Number(value=0, precision=0, label="Seed")
lang_hint = gr.Dropdown(choices=["fr", "en"], value="fr", label="Langue (normalisation)")
with gr.Row():
debug = gr.Checkbox(value=False, label="Mode debug")
adv_sampling = gr.Checkbox(value=False, label="Sampling avancé (Velocity Head)")
btn = gr.Button("Synthétiser")
out_audio = gr.Audio(label="Sortie audio", type="numpy")
logs_box = gr.Textbox(label="Logs (live)", lines=28)
demo.queue(default_concurrency_limit=1, max_size=32)
btn.click(
fn=synthesize,
inputs=[text, debug, adv_sampling, ref_audio, ref_text, steps, cfg, cfg_ref, temperature, max_seq_len, seed, lang_hint],
outputs=[out_audio, logs_box],
api_name="synthesize",
)
return demo
if __name__ == "__main__":
build_demo().launch(ssr_mode=False)