Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from torch import nn | |
| class ConvNeXtBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| intermediate_dim: int | None = None, | |
| layer_scale_init_value: float = 0.0, | |
| elementwise_affine_ln: bool = True, | |
| kernel_size: int = 5, | |
| ): | |
| super().__init__() | |
| intermediate_dim = intermediate_dim if intermediate_dim is not None else dim * 3 | |
| self.dwconv = nn.Conv1d( | |
| dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=dim | |
| ) # depthwise conv | |
| self.norm = nn.LayerNorm( | |
| dim, eps=1e-6, elementwise_affine=elementwise_affine_ln | |
| ) | |
| self.pwconv1 = nn.Linear( | |
| dim, intermediate_dim | |
| ) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
| self.gamma = ( | |
| nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
| if layer_scale_init_value > 0 | |
| else None | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| scale_shift: tuple[torch.Tensor, torch.Tensor] | None = None, | |
| gate: torch.Tensor | None = None, | |
| ) -> torch.Tensor: | |
| residual = x | |
| x = self.dwconv(x) | |
| x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
| x = self.norm(x) | |
| if scale_shift is not None: | |
| scale, shift = scale_shift | |
| x = x * scale[:, None] + shift[:, None] | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.pwconv2(x) | |
| if self.gamma is not None: | |
| x = self.gamma * x | |
| if gate is not None: | |
| x = gate[:, None] * x | |
| x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
| x = residual + x | |
| return x | |