Spaces:
Running
on
Zero
Running
on
Zero
added few things
Browse files
app.py
CHANGED
|
@@ -1,122 +1,33 @@
|
|
| 1 |
import os
|
| 2 |
-
import time
|
| 3 |
-
import traceback
|
| 4 |
-
import threading
|
| 5 |
-
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FTimeout
|
| 6 |
-
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
-
import soundfile as sf
|
| 10 |
import torch
|
|
|
|
| 11 |
import spaces
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
os.environ.setdefault("FLA_CONV_BACKEND", "torch")
|
| 15 |
os.environ.setdefault("FLA_USE_FAST_OPS", "0")
|
| 16 |
-
os.environ.setdefault("FLA_DISABLE_TRITON", "1")
|
| 17 |
-
os.environ.setdefault("TORCH_COMPILE_DISABLE", "1")
|
| 18 |
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
| 19 |
-
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "1")
|
| 20 |
-
os.environ.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")
|
| 21 |
-
os.environ.setdefault("PYTORCH_JIT_DISABLE", "1")
|
| 22 |
-
os.environ.setdefault("TORCHINDUCTOR_DISABLE", "1")
|
| 23 |
-
os.environ.setdefault("NVTX_PROFILE", "0")
|
| 24 |
|
|
|
|
| 25 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 26 |
try:
|
| 27 |
torch.set_float32_matmul_precision("high")
|
| 28 |
except Exception:
|
| 29 |
pass
|
| 30 |
|
| 31 |
-
from huggingface_hub import login
|
| 32 |
-
|
| 33 |
-
# Delay project imports until after we install stubs/patches
|
| 34 |
-
def _install_fla_stub_and_instrumentation(LOG):
|
| 35 |
-
"""
|
| 36 |
-
- Replace SimpleGatedLinearAttention by a safe PyTorch stub
|
| 37 |
-
- Instrument key constructors to log begin/end
|
| 38 |
-
"""
|
| 39 |
-
try:
|
| 40 |
-
import importlib
|
| 41 |
-
|
| 42 |
-
# --- FLA stub on SimpleGatedLinearAttention
|
| 43 |
-
sgm = importlib.import_module("tts.model.simple_gla")
|
| 44 |
-
import torch.nn as nn
|
| 45 |
-
|
| 46 |
-
class SafeSimpleGatedLinearAttention(nn.Module):
|
| 47 |
-
def __init__(self, *args, **kwargs):
|
| 48 |
-
super().__init__()
|
| 49 |
-
self.kwargs = dict(kwargs)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if use_cache and isinstance(past_key_values, dict):
|
| 54 |
-
conv_state = past_key_values.get("conv_state")
|
| 55 |
-
return x, conv_state
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
except Exception as e:
|
| 60 |
-
LOG(f"[patch] FLA stub failed: {e}")
|
| 61 |
-
|
| 62 |
-
# --- Instrument deeper pieces
|
| 63 |
-
try:
|
| 64 |
-
tts_mod = importlib.import_module("tts.tts")
|
| 65 |
-
_orig_ifc = tts_mod.ARTTSModel.instantiate_from_config
|
| 66 |
-
def _ifc_verbose(cfg):
|
| 67 |
-
LOG("[inst] ARTTSModel.instantiate_from_config: begin")
|
| 68 |
-
o = _orig_ifc(cfg)
|
| 69 |
-
LOG("[inst] ARTTSModel.instantiate_from_config: end")
|
| 70 |
-
return o
|
| 71 |
-
tts_mod.ARTTSModel.instantiate_from_config = staticmethod(_ifc_verbose) # type: ignore
|
| 72 |
-
LOG("[patch] ARTTSModel.instantiate_from_config instrumented")
|
| 73 |
-
except Exception as e:
|
| 74 |
-
LOG(f"[patch] ARTTSModel patch failed: {e}")
|
| 75 |
-
|
| 76 |
-
# Patch constructors that previously appeared in traces
|
| 77 |
-
try:
|
| 78 |
-
from codec.models.patchvae.model import PatchVAE
|
| 79 |
-
_orig_p_init = PatchVAE.__init__
|
| 80 |
-
def _p_init_verbose(self, *a, **kw):
|
| 81 |
-
LOG("[inst] PatchVAE.__init__: begin")
|
| 82 |
-
r = _orig_p_init(self, *a, **kw)
|
| 83 |
-
LOG("[inst] PatchVAE.__init__: end")
|
| 84 |
-
return r
|
| 85 |
-
PatchVAE.__init__ = _p_init_verbose # type: ignore
|
| 86 |
-
LOG("[patch] PatchVAE.__init__ instrumented")
|
| 87 |
-
except Exception as e:
|
| 88 |
-
LOG(f"[patch] PatchVAE patch failed: {e}")
|
| 89 |
-
|
| 90 |
-
try:
|
| 91 |
-
from codec.models.wavvae.model import WavVAE
|
| 92 |
-
_orig_w_init = WavVAE.__init__
|
| 93 |
-
def _w_init_verbose(self, *a, **kw):
|
| 94 |
-
LOG("[inst] WavVAE.__init__: begin")
|
| 95 |
-
r = _orig_w_init(self, *a, **kw)
|
| 96 |
-
LOG("[inst] WavVAE.__init__: end")
|
| 97 |
-
return r
|
| 98 |
-
WavVAE.__init__ = _w_init_verbose # type: ignore
|
| 99 |
-
LOG("[patch] WavVAE.__init__ instrumented")
|
| 100 |
-
except Exception as e:
|
| 101 |
-
LOG(f"[patch] WavVAE patch failed: {e}")
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def _env_diag() -> str:
|
| 105 |
-
parts = [f"torch={torch.__version__}"]
|
| 106 |
-
try:
|
| 107 |
-
import triton # type: ignore
|
| 108 |
-
parts.append(f"triton={getattr(triton, '__version__', 'unknown')}")
|
| 109 |
-
except Exception:
|
| 110 |
-
parts.append("triton=not_importable")
|
| 111 |
-
parts.append(f"cuda.is_available={torch.cuda.is_available()}")
|
| 112 |
-
if torch.cuda.is_available():
|
| 113 |
-
parts.append(f"cuda.version={torch.version.cuda}")
|
| 114 |
-
try:
|
| 115 |
-
free, total = torch.cuda.mem_get_info()
|
| 116 |
-
parts.append(f"mem_free={free/1e9:.2f}GB/{total/1e9:.2f}GB")
|
| 117 |
-
except Exception:
|
| 118 |
-
pass
|
| 119 |
-
return " | ".join(parts)
|
| 120 |
|
| 121 |
|
| 122 |
def _normalize_text(s: str, lang_hint: str = "fr") -> str:
|
|
@@ -142,54 +53,71 @@ def _to_mono_float32(arr: np.ndarray) -> np.ndarray:
|
|
| 142 |
return arr.astype(np.float32)
|
| 143 |
|
| 144 |
|
| 145 |
-
def
|
|
|
|
| 146 |
try:
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
except Exception as e:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def _load_model(LOG):
|
| 158 |
-
# Apply stub & instrumentation BEFORE imports that build the graph
|
| 159 |
-
_install_fla_stub_and_instrumentation(LOG)
|
| 160 |
-
|
| 161 |
-
# Import model AFTER patches
|
| 162 |
-
from pardi_speech import PardiSpeech, VelocityHeadSamplingParams as _VHSP # noqa
|
| 163 |
-
|
| 164 |
-
dev = "cuda" if torch.cuda.is_available() else "cpu"
|
| 165 |
-
LOG(f"[load] PardiSpeech.from_pretrained(repo_id=theodorr/pardi-speech-enfr-forbidden, map_location={dev})…")
|
| 166 |
|
| 167 |
-
# Start a watchdog dumper thread for extra detail every 20s
|
| 168 |
-
stop_evt = threading.Event()
|
| 169 |
-
def dumper():
|
| 170 |
-
k = 1
|
| 171 |
-
while not stop_evt.wait(20.0):
|
| 172 |
-
_full_thread_dump(LOG, label=f"stack@{20*k}s")
|
| 173 |
-
k += 1
|
| 174 |
-
th = threading.Thread(target=dumper, daemon=True)
|
| 175 |
-
th.start()
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
m.eval()
|
| 179 |
-
|
| 180 |
-
stop_evt.set()
|
| 181 |
-
th.join(timeout=1.0)
|
| 182 |
-
|
| 183 |
sr = getattr(m, "sampling_rate", 24000)
|
| 184 |
-
|
| 185 |
return m, sr
|
| 186 |
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
@spaces.GPU(duration=200)
|
| 189 |
def synthesize(
|
| 190 |
text: str,
|
| 191 |
debug: bool,
|
| 192 |
-
adv_sampling: bool,
|
| 193 |
ref_audio,
|
| 194 |
ref_text: str,
|
| 195 |
steps: int,
|
|
@@ -200,18 +128,19 @@ def synthesize(
|
|
| 200 |
seed: int,
|
| 201 |
lang_hint: str,
|
| 202 |
):
|
|
|
|
| 203 |
logs = []
|
| 204 |
t0 = time.perf_counter()
|
| 205 |
|
| 206 |
def LOG(msg):
|
| 207 |
logs.append(str(msg))
|
|
|
|
| 208 |
joined = "\n".join(logs)
|
| 209 |
-
if len(joined) >
|
| 210 |
-
joined = joined[-
|
| 211 |
return joined
|
| 212 |
|
| 213 |
try:
|
| 214 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 215 |
if HF_TOKEN:
|
| 216 |
try:
|
| 217 |
login(token=HF_TOKEN)
|
|
@@ -220,32 +149,40 @@ def synthesize(
|
|
| 220 |
yield None, LOG(f"⚠️ HF login failed: {e}")
|
| 221 |
|
| 222 |
yield None, LOG("[env] " + _env_diag())
|
|
|
|
|
|
|
| 223 |
torch.manual_seed(int(seed))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
# Load model with watchdog + heartbeats
|
| 226 |
-
yield None, LOG("[init] loading model…")
|
| 227 |
-
MAX_WALLTIME_S = 110
|
| 228 |
with ThreadPoolExecutor(max_workers=1) as ex:
|
| 229 |
-
fut = ex.submit(
|
| 230 |
-
|
| 231 |
while True:
|
| 232 |
try:
|
| 233 |
-
|
|
|
|
|
|
|
| 234 |
break
|
| 235 |
except FTimeout:
|
| 236 |
now = time.perf_counter()
|
| 237 |
elapsed = now - t0
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
| 241 |
if elapsed > MAX_WALLTIME_S:
|
| 242 |
-
_full_thread_dump(LOG, label="stack@timeout")
|
| 243 |
ex.shutdown(cancel_futures=True)
|
| 244 |
-
raise TimeoutError(f"Watchdog: dépassement {elapsed:.1f}s pendant
|
| 245 |
|
|
|
|
|
|
|
| 246 |
yield None, LOG(f"[init] model ready on {'cuda' if torch.cuda.is_available() else 'cpu'}, sr={_sr}")
|
| 247 |
|
| 248 |
-
# ----
|
| 249 |
txt = _normalize_text(text, lang_hint=lang_hint)
|
| 250 |
yield None, LOG(f"[text] normalized: {txt[:120]}{'…' if len(txt)>120 else ''}")
|
| 251 |
|
|
@@ -265,29 +202,45 @@ def synthesize(
|
|
| 265 |
import torchaudio
|
| 266 |
if sr != getattr(pardi, "sampling_rate", 24000):
|
| 267 |
wav_t = torchaudio.functional.resample(wav_t, sr, getattr(pardi, "sampling_rate", 24000))
|
| 268 |
-
except Exception:
|
| 269 |
-
LOG("⚠️ torchaudio resample
|
| 270 |
wav_t = wav_t.unsqueeze(0)
|
| 271 |
with torch.inference_mode():
|
| 272 |
prefix_tokens = pardi.patchvae.encode(wav_t)
|
| 273 |
prefix = (ref_text or "", prefix_tokens[0])
|
| 274 |
yield None, LOG("[prefix] done.")
|
| 275 |
|
| 276 |
-
# ---- Generate ----
|
| 277 |
yield None, LOG(f"[run] has_prefix={prefix is not None}, steps={steps}, cfg={cfg}, cfg_ref={cfg_ref}, T={temperature}, max_seq_len={max_seq_len}, seed={seed}, adv_sampling={adv_sampling}")
|
|
|
|
|
|
|
| 278 |
with torch.inference_mode():
|
| 279 |
if adv_sampling:
|
| 280 |
-
|
| 281 |
try:
|
| 282 |
-
vel_params = VelocityHeadSamplingParams(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
except TypeError:
|
| 284 |
-
vel_params = VelocityHeadSamplingParams(
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
else:
|
| 287 |
-
|
| 288 |
-
|
|
|
|
|
|
|
| 289 |
wav = wavs[0].detach().cpu().numpy().astype(np.float32)
|
| 290 |
-
|
|
|
|
| 291 |
|
| 292 |
except Exception as e:
|
| 293 |
tb = traceback.format_exc()
|
|
@@ -298,11 +251,13 @@ def build_demo():
|
|
| 298 |
with gr.Blocks(title="Lina-speech / pardi-speech Demo") as demo:
|
| 299 |
gr.Markdown(
|
| 300 |
"## Lina-speech (pardi-speech) – Démo TTS\n"
|
| 301 |
-
"Génère de l'audio à partir de texte, avec ou sans *prefix* (audio de référence)
|
|
|
|
|
|
|
| 302 |
)
|
| 303 |
|
| 304 |
with gr.Row():
|
| 305 |
-
text = gr.Textbox(label="Texte à synthétiser", lines=4,
|
| 306 |
debug = gr.Checkbox(value=False, label="Mode debug (afficher la stacktrace)")
|
| 307 |
adv_sampling = gr.Checkbox(value=False, label="Sampling avancé (Velocity Head)")
|
| 308 |
|
|
@@ -323,13 +278,17 @@ def build_demo():
|
|
| 323 |
|
| 324 |
btn = gr.Button("Synthétiser")
|
| 325 |
out_audio = gr.Audio(label="Sortie audio", type="numpy")
|
| 326 |
-
logs_box = gr.Textbox(label="Logs (live)", lines=
|
| 327 |
|
| 328 |
demo.queue(default_concurrency_limit=1, max_size=32)
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
return demo
|
| 334 |
|
| 335 |
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import torch
|
| 5 |
+
import soundfile as sf
|
| 6 |
import spaces
|
| 7 |
+
import traceback
|
| 8 |
+
import time
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FTimeout
|
| 10 |
|
| 11 |
+
# FLA: forcer les convolutions en backend PyTorch (pas de Triton)
|
| 12 |
os.environ.setdefault("FLA_CONV_BACKEND", "torch")
|
| 13 |
os.environ.setdefault("FLA_USE_FAST_OPS", "0")
|
|
|
|
|
|
|
| 14 |
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Meilleure perf FP32 sur GPU compatibles
|
| 17 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 18 |
try:
|
| 19 |
torch.set_float32_matmul_precision("high")
|
| 20 |
except Exception:
|
| 21 |
pass
|
| 22 |
|
| 23 |
+
from huggingface_hub import login, snapshot_download
|
| 24 |
+
from pardi_speech import PardiSpeech, VelocityHeadSamplingParams # présent dans ce repo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
MODEL_REPO_ID = os.environ.get("MODEL_REPO_ID", "theodorr/pardi-speech-enfr-forbidden")
|
| 27 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
_pardi = None
|
| 30 |
+
_sampling_rate = 24000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def _normalize_text(s: str, lang_hint: str = "fr") -> str:
|
|
|
|
| 53 |
return arr.astype(np.float32)
|
| 54 |
|
| 55 |
|
| 56 |
+
def _env_diag() -> str:
|
| 57 |
+
parts = []
|
| 58 |
try:
|
| 59 |
+
parts.append(f"torch={torch.__version__}")
|
| 60 |
+
try:
|
| 61 |
+
import triton # type: ignore
|
| 62 |
+
parts.append(f"triton={getattr(triton, '__version__', 'unknown')}")
|
| 63 |
+
except Exception:
|
| 64 |
+
parts.append("triton=not_importable")
|
| 65 |
+
parts.append(f"cuda.is_available={torch.cuda.is_available()}")
|
| 66 |
+
if torch.cuda.is_available():
|
| 67 |
+
parts.append(f"cuda.version={torch.version.cuda}")
|
| 68 |
+
try:
|
| 69 |
+
free, total = torch.cuda.mem_get_info()
|
| 70 |
+
parts.append(f"mem_free={free/1e9:.2f}GB/{total/1e9:.2f}GB")
|
| 71 |
+
except Exception:
|
| 72 |
+
pass
|
| 73 |
except Exception as e:
|
| 74 |
+
parts.append(f"env_diag_error={e}")
|
| 75 |
+
return " | ".join(parts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
def _load_model_cpu_first(log):
|
| 79 |
+
"""
|
| 80 |
+
Essaye de pré-télécharger puis de charger sur CPU en priorité.
|
| 81 |
+
Si ça échoue ou dépasse le timeout, on réessaie sur CUDA.
|
| 82 |
+
"""
|
| 83 |
+
# 1) prefetch repo to local cache (évite les blocages de téléchargement cachés)
|
| 84 |
+
log("[prefetch] snapshot_download…")
|
| 85 |
+
local_dir = snapshot_download(
|
| 86 |
+
repo_id=MODEL_REPO_ID,
|
| 87 |
+
token=HF_TOKEN,
|
| 88 |
+
local_dir=None, # hub cache
|
| 89 |
+
local_files_only=False,
|
| 90 |
+
allow_patterns=None, # tout
|
| 91 |
+
ignore_patterns=None,
|
| 92 |
+
)
|
| 93 |
+
log(f"[prefetch] done -> {local_dir}")
|
| 94 |
+
|
| 95 |
+
# 2) CPU load
|
| 96 |
+
log("[load] from_pretrained(map_location='cpu')…")
|
| 97 |
+
m = PardiSpeech.from_pretrained(local_dir, map_location='cpu')
|
| 98 |
m.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
sr = getattr(m, "sampling_rate", 24000)
|
| 100 |
+
log(f"[load] cpu OK (sr={sr})")
|
| 101 |
return m, sr
|
| 102 |
|
| 103 |
|
| 104 |
+
def _move_to_cuda_if_available(m, log):
|
| 105 |
+
if torch.cuda.is_available():
|
| 106 |
+
log("[move] moving model to cuda…")
|
| 107 |
+
# PardiSpeech expose généralement un .to(device) (via nn.Module)
|
| 108 |
+
try:
|
| 109 |
+
m = m.to('cuda') # type: ignore[attr-defined]
|
| 110 |
+
except Exception as e:
|
| 111 |
+
log(f"[move] .to('cuda') failed: {e}. Keeping on CPU.")
|
| 112 |
+
return m
|
| 113 |
+
return m
|
| 114 |
+
|
| 115 |
+
|
| 116 |
@spaces.GPU(duration=200)
|
| 117 |
def synthesize(
|
| 118 |
text: str,
|
| 119 |
debug: bool,
|
| 120 |
+
adv_sampling: bool, # toggle "Sampling avancé (Velocity Head)"
|
| 121 |
ref_audio,
|
| 122 |
ref_text: str,
|
| 123 |
steps: int,
|
|
|
|
| 128 |
seed: int,
|
| 129 |
lang_hint: str,
|
| 130 |
):
|
| 131 |
+
# ---- Generator that streams logs to UI ----
|
| 132 |
logs = []
|
| 133 |
t0 = time.perf_counter()
|
| 134 |
|
| 135 |
def LOG(msg):
|
| 136 |
logs.append(str(msg))
|
| 137 |
+
# Keep last ~8000 chars
|
| 138 |
joined = "\n".join(logs)
|
| 139 |
+
if len(joined) > 8000:
|
| 140 |
+
joined = joined[-8000:]
|
| 141 |
return joined
|
| 142 |
|
| 143 |
try:
|
|
|
|
| 144 |
if HF_TOKEN:
|
| 145 |
try:
|
| 146 |
login(token=HF_TOKEN)
|
|
|
|
| 149 |
yield None, LOG(f"⚠️ HF login failed: {e}")
|
| 150 |
|
| 151 |
yield None, LOG("[env] " + _env_diag())
|
| 152 |
+
|
| 153 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 154 |
torch.manual_seed(int(seed))
|
| 155 |
+
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "1")
|
| 156 |
+
|
| 157 |
+
# --- CPU-first loader with heartbeats and timeout ---
|
| 158 |
+
yield None, LOG("[init] prefetch + CPU-first load…")
|
| 159 |
+
MAX_WALLTIME_S = 110 # UX watchdog
|
| 160 |
|
|
|
|
|
|
|
|
|
|
| 161 |
with ThreadPoolExecutor(max_workers=1) as ex:
|
| 162 |
+
fut = ex.submit(_load_model_cpu_first, LOG)
|
| 163 |
+
last_hb = time.perf_counter()
|
| 164 |
while True:
|
| 165 |
try:
|
| 166 |
+
m, sr = fut.result(timeout=2.0)
|
| 167 |
+
pardi = m
|
| 168 |
+
_sr = sr
|
| 169 |
break
|
| 170 |
except FTimeout:
|
| 171 |
now = time.perf_counter()
|
| 172 |
elapsed = now - t0
|
| 173 |
+
# heartbeat
|
| 174 |
+
if now - last_hb >= 2.0:
|
| 175 |
+
yield None, LOG(f"[init] still loading on CPU… {elapsed:.1f}s")
|
| 176 |
+
last_hb = now
|
| 177 |
if elapsed > MAX_WALLTIME_S:
|
|
|
|
| 178 |
ex.shutdown(cancel_futures=True)
|
| 179 |
+
raise TimeoutError(f"Watchdog: dépassement {elapsed:.1f}s pendant le chargement (CPU)")
|
| 180 |
|
| 181 |
+
# Move to cuda if possible
|
| 182 |
+
pardi = _move_to_cuda_if_available(pardi, LOG)
|
| 183 |
yield None, LOG(f"[init] model ready on {'cuda' if torch.cuda.is_available() else 'cpu'}, sr={_sr}")
|
| 184 |
|
| 185 |
+
# ---- Text & prefix ----
|
| 186 |
txt = _normalize_text(text, lang_hint=lang_hint)
|
| 187 |
yield None, LOG(f"[text] normalized: {txt[:120]}{'…' if len(txt)>120 else ''}")
|
| 188 |
|
|
|
|
| 202 |
import torchaudio
|
| 203 |
if sr != getattr(pardi, "sampling_rate", 24000):
|
| 204 |
wav_t = torchaudio.functional.resample(wav_t, sr, getattr(pardi, "sampling_rate", 24000))
|
| 205 |
+
except Exception as _e:
|
| 206 |
+
LOG("⚠️ torchaudio not available for resample; using original SR")
|
| 207 |
wav_t = wav_t.unsqueeze(0)
|
| 208 |
with torch.inference_mode():
|
| 209 |
prefix_tokens = pardi.patchvae.encode(wav_t)
|
| 210 |
prefix = (ref_text or "", prefix_tokens[0])
|
| 211 |
yield None, LOG("[prefix] done.")
|
| 212 |
|
|
|
|
| 213 |
yield None, LOG(f"[run] has_prefix={prefix is not None}, steps={steps}, cfg={cfg}, cfg_ref={cfg_ref}, T={temperature}, max_seq_len={max_seq_len}, seed={seed}, adv_sampling={adv_sampling}")
|
| 214 |
+
|
| 215 |
+
# ---- FAST PATH by default ----
|
| 216 |
with torch.inference_mode():
|
| 217 |
if adv_sampling:
|
| 218 |
+
yield None, LOG("[run] VelocityHeadSamplingParams enabled…")
|
| 219 |
try:
|
| 220 |
+
vel_params = VelocityHeadSamplingParams(
|
| 221 |
+
cfg_ref=float(cfg_ref),
|
| 222 |
+
cfg=float(cfg),
|
| 223 |
+
num_steps=int(steps)
|
| 224 |
+
)
|
| 225 |
except TypeError:
|
| 226 |
+
vel_params = VelocityHeadSamplingParams(
|
| 227 |
+
cfg_ref=float(cfg_ref),
|
| 228 |
+
cfg=float(cfg),
|
| 229 |
+
num_steps=int(steps),
|
| 230 |
+
temperature=float(temperature)
|
| 231 |
+
)
|
| 232 |
+
wavs, _ = pardi.text_to_speech(
|
| 233 |
+
[txt], prefix, max_seq_len=int(max_seq_len),
|
| 234 |
+
velocity_head_sampling_params=vel_params
|
| 235 |
+
)
|
| 236 |
else:
|
| 237 |
+
yield None, LOG("[run] fast path (notebook) without VelocityHead…")
|
| 238 |
+
wavs, _ = pardi.text_to_speech(
|
| 239 |
+
[txt], prefix, max_seq_len=int(max_seq_len)
|
| 240 |
+
)
|
| 241 |
wav = wavs[0].detach().cpu().numpy().astype(np.float32)
|
| 242 |
+
|
| 243 |
+
yield (_sampling_rate, wav), LOG(f"[ok] walltime={time.perf_counter()-t0:.2f}s")
|
| 244 |
|
| 245 |
except Exception as e:
|
| 246 |
tb = traceback.format_exc()
|
|
|
|
| 251 |
with gr.Blocks(title="Lina-speech / pardi-speech Demo") as demo:
|
| 252 |
gr.Markdown(
|
| 253 |
"## Lina-speech (pardi-speech) – Démo TTS\n"
|
| 254 |
+
"Génère de l'audio à partir de texte, avec ou sans *prefix* (audio de référence).\n"
|
| 255 |
+
"Par défaut, le chemin **rapide** (comme dans le notebook) est utilisé. "
|
| 256 |
+
"Active **Sampling avancé** pour passer par Velocity Head."
|
| 257 |
)
|
| 258 |
|
| 259 |
with gr.Row():
|
| 260 |
+
text = gr.Textbox(label="Texte à synthétiser", lines=4, placeholder="Tape ton texte ici…")
|
| 261 |
debug = gr.Checkbox(value=False, label="Mode debug (afficher la stacktrace)")
|
| 262 |
adv_sampling = gr.Checkbox(value=False, label="Sampling avancé (Velocity Head)")
|
| 263 |
|
|
|
|
| 278 |
|
| 279 |
btn = gr.Button("Synthétiser")
|
| 280 |
out_audio = gr.Audio(label="Sortie audio", type="numpy")
|
| 281 |
+
logs_box = gr.Textbox(label="Logs (live)", lines=18)
|
| 282 |
|
| 283 |
demo.queue(default_concurrency_limit=1, max_size=32)
|
| 284 |
+
|
| 285 |
+
# Use generator function: stream logs to UI while running
|
| 286 |
+
btn.click(
|
| 287 |
+
fn=synthesize,
|
| 288 |
+
inputs=[text, debug, adv_sampling, ref_audio, ref_text, steps, cfg, cfg_ref, temperature, max_seq_len, seed, lang_hint],
|
| 289 |
+
outputs=[out_audio, logs_box],
|
| 290 |
+
api_name="synthesize"
|
| 291 |
+
)
|
| 292 |
return demo
|
| 293 |
|
| 294 |
|