import torch from torch import nn class ConvNeXtBlock(nn.Module): def __init__( self, dim: int, intermediate_dim: int | None = None, layer_scale_init_value: float = 0.0, elementwise_affine_ln: bool = True, kernel_size: int = 5, ): super().__init__() intermediate_dim = intermediate_dim if intermediate_dim is not None else dim * 3 self.dwconv = nn.Conv1d( dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=dim ) # depthwise conv self.norm = nn.LayerNorm( dim, eps=1e-6, elementwise_affine=elementwise_affine_ln ) self.pwconv1 = nn.Linear( dim, intermediate_dim ) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(intermediate_dim, dim) self.gamma = ( nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None ) def forward( self, x: torch.Tensor, scale_shift: tuple[torch.Tensor, torch.Tensor] | None = None, gate: torch.Tensor | None = None, ) -> torch.Tensor: residual = x x = self.dwconv(x) x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) x = self.norm(x) if scale_shift is not None: scale, shift = scale_shift x = x * scale[:, None] + shift[:, None] x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x if gate is not None: x = gate[:, None] * x x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) x = residual + x return x