import argparse from pathlib import Path import librosa import soundfile as sf import torch import torchaudio from safetensors.torch import save_file from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from datasets import Audio, load_dataset, load_from_disk from zcodec.models import WavVAE, ZFlowAutoEncoder class AudioDataset(Dataset): def __init__(self, file_list, target_sr): self.paths = file_list self.target_sr = target_sr def __len__(self): return len(self.paths) def __getitem__(self, idx): path = self.paths[idx] wav, sr = sf.read(str(path)) if sr != self.target_sr: wav = librosa.resample(wav, orig_sr=sr, target_sr=self.target_sr) wav = torch.tensor(wav).unsqueeze(0).float() # shape: [1, T] return wav, path @torch.no_grad() def encode_batch(model, batch, device, out_dir, save_latent=True): wavs, paths = batch for wav, path in zip(wavs, paths): wav = wav.to(device) latent, indices = model.encode(wav) if save_latent: to_save = latent.cpu() else: save_latent = indices.cpu() out_path = out_dir / (path.stem + ".st") save_file({"audio_z": to_save}, str(out_path)) def main(): parser = argparse.ArgumentParser( description="Batch encode audio files with WavVAE." ) parser.add_argument( "input_dataset", type=Path, help="Text file listing paths to audio files (one per line)", ) parser.add_argument( "checkpoint", type=Path, help="Path to zflowae checkpoint directory" ) parser.add_argument( "output_dataset", type=Path, help="Directory to save Safetensors latents" ) parser.add_argument("--in_column", type=str, default="audio_z") parser.add_argument("--out_column", type=str, default="audio_latent") parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu" ) parser.add_argument("--split", type=str, default="all") parser.add_argument( "--num_workers", type=int, default=1, help="Number of DataLoader workers" ) parser.add_argument("--from_file", action="store_true") parser.add_argument("--from_hub", action="store_true") parser.add_argument("--file_prefix", type=str, default=None) args = parser.parse_args() device = torch.device(args.device) # Load model zflowae = ZFlowAutoEncoder.from_pretrained_local(args.checkpoint) zflowae = zflowae.to(device).eval() # Prepare dataset and dataloader if args.from_hub: dataset = load_dataset(str(args.input_dataset), args.split) else: dataset = load_from_disk(str(args.input_dataset), args.split) # if args.from_file: raise NotImplemented def map_fn(audio_file_path): if args.file_prefix is not None: audio_file_path = args.file_prefix+"/"+audio_file_path wav, sr = torchaudio.load(audio_file_path) wav = wav.mean(dim=0, keepdim=True) with torch.inference_mode(): latent = zflowae.encode(wav.to(device)) return {"audio_z": latent} dataset = dataset.map(map_fn, input_columns=args.in_column) else: dataset = dataset.with_format( "torch", columns=args.in_column, ) def map_fn(audio): with torch.inference_mode(): audio_z = audio.to(device) latent, _ = zflowae.encode(audio_z) return {args.out_column: latent} dataset = dataset.map( map_fn, input_columns=args.in_column, remove_columns=args.in_column ) dataset.save_to_disk(args.output_dataset) if __name__ == "__main__": main()