Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	add app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,439 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import json
         | 
| 2 | 
            +
            import time
         | 
| 3 | 
            +
            import cv2
         | 
| 4 | 
            +
            import tempfile
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import gradio as gr
         | 
| 8 | 
            +
            import numpy as np
         | 
| 9 | 
            +
            from gradio.themes.ocean import Ocean
         | 
| 10 | 
            +
            from PIL import Image
         | 
| 11 | 
            +
            import torch
         | 
| 12 | 
            +
            from transformers import AutoModelForCausalLM
         | 
| 13 | 
            +
            import supervision as sv
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            model_id = "moondream/moondream3-preview"
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 18 | 
            +
                model_id,
         | 
| 19 | 
            +
                trust_remote_code=True,
         | 
| 20 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 21 | 
            +
                device_map={"": "cuda"},
         | 
| 22 | 
            +
            )
         | 
| 23 | 
            +
            model.compile()
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            def create_annotated_image(image, detection_result, object_name="Object"):
         | 
| 26 | 
            +
                if not isinstance(detection_result, dict) or "objects" not in detection_result:
         | 
| 27 | 
            +
                    return image
         | 
| 28 | 
            +
                
         | 
| 29 | 
            +
                original_width, original_height = image.size
         | 
| 30 | 
            +
                annotated_image = np.array(image.convert("RGB"))
         | 
| 31 | 
            +
              
         | 
| 32 | 
            +
                bboxes = []
         | 
| 33 | 
            +
                labels = []
         | 
| 34 | 
            +
                
         | 
| 35 | 
            +
                for i, obj in enumerate(detection_result["objects"]):
         | 
| 36 | 
            +
                    x_min = int(obj["x_min"] * original_width)
         | 
| 37 | 
            +
                    y_min = int(obj["y_min"] * original_height)
         | 
| 38 | 
            +
                    x_max = int(obj["x_max"] * original_width)
         | 
| 39 | 
            +
                    y_max = int(obj["y_max"] * original_height)
         | 
| 40 | 
            +
                    
         | 
| 41 | 
            +
                    x_min = max(0, min(x_min, original_width))
         | 
| 42 | 
            +
                    y_min = max(0, min(y_min, original_height))
         | 
| 43 | 
            +
                    x_max = max(0, min(x_max, original_width))
         | 
| 44 | 
            +
                    y_max = max(0, min(y_max, original_height))
         | 
| 45 | 
            +
                    
         | 
| 46 | 
            +
                    if x_max > x_min and y_max > y_min:
         | 
| 47 | 
            +
                        bboxes.append([x_min, y_min, x_max, y_max])
         | 
| 48 | 
            +
                        labels.append(f"{object_name} {i+1}")
         | 
| 49 | 
            +
                        print(f"Box {i+1}: ({x_min}, {y_min}, {x_max}, {y_max})")
         | 
| 50 | 
            +
                
         | 
| 51 | 
            +
                
         | 
| 52 | 
            +
                detections = sv.Detections(
         | 
| 53 | 
            +
                    xyxy=np.array(bboxes, dtype=np.float32),
         | 
| 54 | 
            +
                    class_id=np.arange(len(bboxes))
         | 
| 55 | 
            +
                )
         | 
| 56 | 
            +
                
         | 
| 57 | 
            +
                bounding_box_annotator = sv.BoxAnnotator(
         | 
| 58 | 
            +
                    thickness=3,
         | 
| 59 | 
            +
                    color_lookup=sv.ColorLookup.INDEX
         | 
| 60 | 
            +
                )
         | 
| 61 | 
            +
                label_annotator = sv.LabelAnnotator(
         | 
| 62 | 
            +
                    text_thickness=2,
         | 
| 63 | 
            +
                    text_scale=0.6,
         | 
| 64 | 
            +
                    color_lookup=sv.ColorLookup.INDEX
         | 
| 65 | 
            +
                )
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                annotated_image = bounding_box_annotator.annotate(
         | 
| 68 | 
            +
                    scene=annotated_image, detections=detections
         | 
| 69 | 
            +
                )
         | 
| 70 | 
            +
                annotated_image = label_annotator.annotate(
         | 
| 71 | 
            +
                    scene=annotated_image, detections=detections, labels=labels
         | 
| 72 | 
            +
                )
         | 
| 73 | 
            +
                    
         | 
| 74 | 
            +
                    
         | 
| 75 | 
            +
                
         | 
| 76 | 
            +
                return Image.fromarray(annotated_image)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
             | 
| 80 | 
            +
            def process_video_with_tracking(video_path, prompt, detection_interval=3):
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                cap = cv2.VideoCapture(video_path)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                fps = int(cap.get(cv2.CAP_PROP_FPS))
         | 
| 85 | 
            +
                width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
         | 
| 86 | 
            +
                height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
         | 
| 87 | 
            +
                total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
         | 
| 88 | 
            +
                
         | 
| 89 | 
            +
                byte_tracker = sv.ByteTrack()
         | 
| 90 | 
            +
                
         | 
| 91 | 
            +
                temp_dir = tempfile.mkdtemp()
         | 
| 92 | 
            +
                output_path = os.path.join(temp_dir, "tracked_video.mp4")
         | 
| 93 | 
            +
                fourcc = cv2.VideoWriter_fourcc(*'mp4v')
         | 
| 94 | 
            +
                out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
         | 
| 95 | 
            +
                
         | 
| 96 | 
            +
                frame_count = 0
         | 
| 97 | 
            +
                detection_count = 0
         | 
| 98 | 
            +
                last_detections = None
         | 
| 99 | 
            +
                
         | 
| 100 | 
            +
                try:
         | 
| 101 | 
            +
                    while True:
         | 
| 102 | 
            +
                        ret, frame = cap.read()
         | 
| 103 | 
            +
                        if not ret:
         | 
| 104 | 
            +
                            break
         | 
| 105 | 
            +
                        
         | 
| 106 | 
            +
                        run_detection = (frame_count % detection_interval == 0)
         | 
| 107 | 
            +
                        
         | 
| 108 | 
            +
                        if run_detection:
         | 
| 109 | 
            +
                            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         | 
| 110 | 
            +
                            pil_image = Image.fromarray(frame_rgb)
         | 
| 111 | 
            +
                            
         | 
| 112 | 
            +
                            result = model.detect(pil_image, prompt)
         | 
| 113 | 
            +
                            detection_count += 1
         | 
| 114 | 
            +
                            
         | 
| 115 | 
            +
                            if "objects" in result and result["objects"]:
         | 
| 116 | 
            +
                                bboxes = []
         | 
| 117 | 
            +
                                confidences = []
         | 
| 118 | 
            +
                                
         | 
| 119 | 
            +
                                for obj in result["objects"]:
         | 
| 120 | 
            +
                                    x_min = max(0.0, min(1.0, obj["x_min"])) * width
         | 
| 121 | 
            +
                                    y_min = max(0.0, min(1.0, obj["y_min"])) * height
         | 
| 122 | 
            +
                                    x_max = max(0.0, min(1.0, obj["x_max"])) * width
         | 
| 123 | 
            +
                                    y_max = max(0.0, min(1.0, obj["y_max"])) * height
         | 
| 124 | 
            +
                                    
         | 
| 125 | 
            +
                                    if x_max > x_min and y_max > y_min:
         | 
| 126 | 
            +
                                        bboxes.append([x_min, y_min, x_max, y_max])
         | 
| 127 | 
            +
                                        confidences.append(0.8)
         | 
| 128 | 
            +
                                
         | 
| 129 | 
            +
                                if bboxes:  
         | 
| 130 | 
            +
                                    detections = sv.Detections(
         | 
| 131 | 
            +
                                        xyxy=np.array(bboxes, dtype=np.float32),
         | 
| 132 | 
            +
                                        confidence=np.array(confidences, dtype=np.float32),
         | 
| 133 | 
            +
                                        class_id=np.zeros(len(bboxes), dtype=int)
         | 
| 134 | 
            +
                                    )
         | 
| 135 | 
            +
                                    
         | 
| 136 | 
            +
                                    detections = byte_tracker.update_with_detections(detections)
         | 
| 137 | 
            +
                                    last_detections = detections
         | 
| 138 | 
            +
                                else:
         | 
| 139 | 
            +
                                    empty_detections = sv.Detections.empty()
         | 
| 140 | 
            +
                                    detections = byte_tracker.update_with_detections(empty_detections)
         | 
| 141 | 
            +
                                    last_detections = detections
         | 
| 142 | 
            +
                            else:
         | 
| 143 | 
            +
                                empty_detections = sv.Detections.empty()
         | 
| 144 | 
            +
                                detections = byte_tracker.update_with_detections(empty_detections)
         | 
| 145 | 
            +
                                last_detections = detections
         | 
| 146 | 
            +
                                    
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                        else:
         | 
| 149 | 
            +
                            empty_detections = sv.Detections.empty()
         | 
| 150 | 
            +
                            detections = byte_tracker.update_with_detections(empty_detections)
         | 
| 151 | 
            +
                        if detections is not None and len(detections) > 0:
         | 
| 152 | 
            +
                            box_annotator = sv.BoxAnnotator(
         | 
| 153 | 
            +
                                thickness=3,
         | 
| 154 | 
            +
                                color_lookup=sv.ColorLookup.TRACK
         | 
| 155 | 
            +
                            )
         | 
| 156 | 
            +
                            label_annotator = sv.LabelAnnotator(
         | 
| 157 | 
            +
                                text_scale=0.6,
         | 
| 158 | 
            +
                                text_thickness=2,
         | 
| 159 | 
            +
                                color_lookup=sv.ColorLookup.TRACK
         | 
| 160 | 
            +
                            )
         | 
| 161 | 
            +
                            
         | 
| 162 | 
            +
                            labels = []
         | 
| 163 | 
            +
                            for tracker_id in detections.tracker_id:
         | 
| 164 | 
            +
                                if tracker_id is not None:
         | 
| 165 | 
            +
                                    labels.append(f"{prompt} ID: {tracker_id}")
         | 
| 166 | 
            +
                                else:
         | 
| 167 | 
            +
                                    labels.append(f"{prompt} Unknown")
         | 
| 168 | 
            +
                            
         | 
| 169 | 
            +
                            frame = box_annotator.annotate(scene=frame, detections=detections)
         | 
| 170 | 
            +
                            frame = label_annotator.annotate(scene=frame, detections=detections, labels=labels)
         | 
| 171 | 
            +
                        
         | 
| 172 | 
            +
                        out.write(frame)
         | 
| 173 | 
            +
                        frame_count += 1
         | 
| 174 | 
            +
                        
         | 
| 175 | 
            +
                        if frame_count % 30 == 0:
         | 
| 176 | 
            +
                            progress = (frame_count / total_frames) * 100
         | 
| 177 | 
            +
                            print(f"Processing: {progress:.1f}% ({frame_count}/{total_frames}) - Detections: {detection_count}")
         | 
| 178 | 
            +
                
         | 
| 179 | 
            +
                finally:
         | 
| 180 | 
            +
                    cap.release()
         | 
| 181 | 
            +
                    out.release()
         | 
| 182 | 
            +
                
         | 
| 183 | 
            +
                summary = f"""Video processing complete:
         | 
| 184 | 
            +
            - Total frames processed: {frame_count}
         | 
| 185 | 
            +
            - Detection runs: {detection_count} (every {detection_interval} frames)
         | 
| 186 | 
            +
            - Objects tracked: {prompt}
         | 
| 187 | 
            +
            - Processing speed: ~{detection_count/frame_count*100:.1f}% detection rate for optimization"""
         | 
| 188 | 
            +
                
         | 
| 189 | 
            +
                return output_path, summary
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            def create_point_annotated_image(image, point_result):
         | 
| 192 | 
            +
                """Create annotated image with points for detected objects."""
         | 
| 193 | 
            +
                if not isinstance(point_result, dict) or "points" not in point_result:
         | 
| 194 | 
            +
                    return image
         | 
| 195 | 
            +
                
         | 
| 196 | 
            +
                original_width, original_height = image.size
         | 
| 197 | 
            +
                annotated_image = np.array(image.convert("RGB"))
         | 
| 198 | 
            +
                
         | 
| 199 | 
            +
                points = []
         | 
| 200 | 
            +
                for point in point_result["points"]:
         | 
| 201 | 
            +
                    x = int(point["x"] * original_width)
         | 
| 202 | 
            +
                    y = int(point["y"] * original_height)
         | 
| 203 | 
            +
                    points.append([x, y])
         | 
| 204 | 
            +
                
         | 
| 205 | 
            +
                if points:
         | 
| 206 | 
            +
                    points_array = np.array(points).reshape(1, -1, 2)
         | 
| 207 | 
            +
                    key_points = sv.KeyPoints(xy=points_array)
         | 
| 208 | 
            +
                    vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
         | 
| 209 | 
            +
                    annotated_image = vertex_annotator.annotate(
         | 
| 210 | 
            +
                        scene=annotated_image, key_points=key_points
         | 
| 211 | 
            +
                    )
         | 
| 212 | 
            +
                
         | 
| 213 | 
            +
                return Image.fromarray(annotated_image)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            def detect_objects(image, prompt, task_type, max_objects):
         | 
| 216 | 
            +
                STANDARD_SIZE = (1024, 1024)
         | 
| 217 | 
            +
                image.thumbnail(STANDARD_SIZE)
         | 
| 218 | 
            +
                
         | 
| 219 | 
            +
                t0 = time.perf_counter()
         | 
| 220 | 
            +
                
         | 
| 221 | 
            +
                if task_type == "Object Detection":
         | 
| 222 | 
            +
                    settings = {"max_objects": max_objects} if max_objects > 0 else {}
         | 
| 223 | 
            +
                    result = model.detect(image, prompt, settings=settings)
         | 
| 224 | 
            +
                    annotated_image = create_annotated_image(image, result, prompt)
         | 
| 225 | 
            +
                    
         | 
| 226 | 
            +
                elif task_type == "Point Detection":
         | 
| 227 | 
            +
                    result = model.point(image, prompt)
         | 
| 228 | 
            +
                    annotated_image = create_point_annotated_image(image, result)
         | 
| 229 | 
            +
                    
         | 
| 230 | 
            +
                elif task_type == "Caption":
         | 
| 231 | 
            +
                    result = model.caption(image, length="normal")
         | 
| 232 | 
            +
                    annotated_image = image  
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                else:  
         | 
| 235 | 
            +
                    result = model.query(image=image, question=prompt, reasoning=True)
         | 
| 236 | 
            +
                    annotated_image = image  
         | 
| 237 | 
            +
                      
         | 
| 238 | 
            +
                
         | 
| 239 | 
            +
                elapsed_ms = (time.perf_counter() - t0) * 1_000
         | 
| 240 | 
            +
                
         | 
| 241 | 
            +
                if isinstance(result, dict):
         | 
| 242 | 
            +
                    if "objects" in result:
         | 
| 243 | 
            +
                      output_text = f"Found {len(result['objects'])} objects:\n"
         | 
| 244 | 
            +
                      for i, obj in enumerate(result['objects'], 1):
         | 
| 245 | 
            +
                          output_text += f"\n{i}. Bounding box: "
         | 
| 246 | 
            +
                          output_text += f"({obj['x_min']:.3f}, {obj['y_min']:.3f}, {obj['x_max']:.3f}, {obj['y_max']:.3f})"
         | 
| 247 | 
            +
                    elif "points" in result:
         | 
| 248 | 
            +
                        output_text = f"Found {len(result['points'])} points:\n"
         | 
| 249 | 
            +
                        for i, point in enumerate(result['points'], 1):
         | 
| 250 | 
            +
                            output_text += f"\n{i}. Point: ({point['x']:.3f}, {point['y']:.3f})"
         | 
| 251 | 
            +
                    elif "caption" in result:
         | 
| 252 | 
            +
                        output_text = result['caption']
         | 
| 253 | 
            +
                    elif "answer" in result:
         | 
| 254 | 
            +
                        if "reasoning" in result:
         | 
| 255 | 
            +
                            output_text = f"Reasoning: {result['reasoning']}\n\nAnswer: {result['answer']}"
         | 
| 256 | 
            +
                        else:
         | 
| 257 | 
            +
                            output_text = result['answer']
         | 
| 258 | 
            +
                    else:
         | 
| 259 | 
            +
                        output_text = json.dumps(result, indent=2)
         | 
| 260 | 
            +
                else:
         | 
| 261 | 
            +
                    output_text = str(result)
         | 
| 262 | 
            +
                
         | 
| 263 | 
            +
                timing_text = f"Inference time: {elapsed_ms:.0f} ms"
         | 
| 264 | 
            +
                
         | 
| 265 | 
            +
                return annotated_image, output_text, timing_text
         | 
| 266 | 
            +
             | 
| 267 | 
            +
            def process_video(video_file, prompt, detection_interval):
         | 
| 268 | 
            +
                if video_file is None:
         | 
| 269 | 
            +
                    return None, "Please upload a video file"
         | 
| 270 | 
            +
                
         | 
| 271 | 
            +
                output_path, summary = process_video_with_tracking(
         | 
| 272 | 
            +
                    video_file, prompt, detection_interval
         | 
| 273 | 
            +
                )
         | 
| 274 | 
            +
                return output_path, summary
         | 
| 275 | 
            +
             | 
| 276 | 
            +
             | 
| 277 | 
            +
            with gr.Blocks(theme=gr.themes.Soft()) as demo:
         | 
| 278 | 
            +
                gr.Markdown("# Moondream3 🌝")
         | 
| 279 | 
            +
                gr.Markdown("""
         | 
| 280 | 
            +
                *Try [Moondream3 Preview](https://huggingface.co/moondream/moondream3-preview) for following tasks:*
         | 
| 281 | 
            +
                
         | 
| 282 | 
            +
                - **Object Detection**
         | 
| 283 | 
            +
                - **Point Detection**
         | 
| 284 | 
            +
                - **Captioning**
         | 
| 285 | 
            +
                - **Visual Question Answering**
         | 
| 286 | 
            +
                - **Video Object Tracking**
         | 
| 287 | 
            +
                """)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                with gr.Tabs() as tabs:
         | 
| 290 | 
            +
                    with gr.Tab("Image Processing"):
         | 
| 291 | 
            +
                        with gr.Row():
         | 
| 292 | 
            +
                            with gr.Column(scale=2):
         | 
| 293 | 
            +
                                image_input = gr.Image(label="Upload an image", type="pil", height=400)
         | 
| 294 | 
            +
                                
         | 
| 295 | 
            +
                                task_type = gr.Radio(
         | 
| 296 | 
            +
                                    choices=["Object Detection", "Point Detection", "Caption", "Visual Question Answering"],
         | 
| 297 | 
            +
                                    label="Task Type",
         | 
| 298 | 
            +
                                    value="Object Detection"
         | 
| 299 | 
            +
                                )
         | 
| 300 | 
            +
                                
         | 
| 301 | 
            +
                                prompt_input = gr.Textbox(
         | 
| 302 | 
            +
                                    label="Prompt (object to detect/question to ask)",
         | 
| 303 | 
            +
                                    placeholder="e.g., 'car', 'person', 'What's in this image?'",
         | 
| 304 | 
            +
                                    value="objects"
         | 
| 305 | 
            +
                                )
         | 
| 306 | 
            +
                                
         | 
| 307 | 
            +
                                max_objects = gr.Number(
         | 
| 308 | 
            +
                                    label="Max Objects (for Object Detection only)",
         | 
| 309 | 
            +
                                    value=10,
         | 
| 310 | 
            +
                                    minimum=1,
         | 
| 311 | 
            +
                                    maximum=50,
         | 
| 312 | 
            +
                                    step=1,
         | 
| 313 | 
            +
                                    visible=True
         | 
| 314 | 
            +
                                )
         | 
| 315 | 
            +
                                
         | 
| 316 | 
            +
                                generate_btn = gr.Button(value="Generate", variant="primary")
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                            with gr.Column(scale=2):
         | 
| 319 | 
            +
                                output_image = gr.Image(
         | 
| 320 | 
            +
                                    type="pil", 
         | 
| 321 | 
            +
                                    label="Result", 
         | 
| 322 | 
            +
                                    height=400
         | 
| 323 | 
            +
                                )
         | 
| 324 | 
            +
                                output_textbox = gr.Textbox(
         | 
| 325 | 
            +
                                    label="Model Response", 
         | 
| 326 | 
            +
                                    lines=10,
         | 
| 327 | 
            +
                                    show_copy_button=True
         | 
| 328 | 
            +
                                )
         | 
| 329 | 
            +
                                output_time = gr.Markdown()
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                        gr.Markdown("### Examples")
         | 
| 332 | 
            +
              
         | 
| 333 | 
            +
                        example_prompts = [
         | 
| 334 | 
            +
                            [
         | 
| 335 | 
            +
                                "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG",
         | 
| 336 | 
            +
                                "Object Detection",
         | 
| 337 | 
            +
                                "candy",
         | 
| 338 | 
            +
                                5
         | 
| 339 | 
            +
                            ],
         | 
| 340 | 
            +
                            [
         | 
| 341 | 
            +
                                "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG", 
         | 
| 342 | 
            +
                                "Point Detection",
         | 
| 343 | 
            +
                                "candy",
         | 
| 344 | 
            +
                                5
         | 
| 345 | 
            +
                            ],
         | 
| 346 | 
            +
                            [
         | 
| 347 | 
            +
                                "https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg",
         | 
| 348 | 
            +
                                "Caption", 
         | 
| 349 | 
            +
                                "",
         | 
| 350 | 
            +
                                5
         | 
| 351 | 
            +
                            ],
         | 
| 352 | 
            +
                            [
         | 
| 353 | 
            +
                                "https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg",
         | 
| 354 | 
            +
                                "Visual Question Answering", 
         | 
| 355 | 
            +
                                "how well does moondream 3 perform in chartvqa?",
         | 
| 356 | 
            +
                                5
         | 
| 357 | 
            +
                            ],
         | 
| 358 | 
            +
                        ]
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                        gr.Examples(
         | 
| 361 | 
            +
                            examples=example_prompts,
         | 
| 362 | 
            +
                            inputs=[image_input, task_type, prompt_input, max_objects],
         | 
| 363 | 
            +
                            label="Click an example to populate inputs"
         | 
| 364 | 
            +
                        )
         | 
| 365 | 
            +
                    
         | 
| 366 | 
            +
                    with gr.Tab("Video Object Tracking"):
         | 
| 367 | 
            +
                        with gr.Row():
         | 
| 368 | 
            +
                            with gr.Column(scale=2):
         | 
| 369 | 
            +
                                video_input = gr.Video(
         | 
| 370 | 
            +
                                    label="Upload a video file",
         | 
| 371 | 
            +
                                    height=400
         | 
| 372 | 
            +
                                )
         | 
| 373 | 
            +
                                
         | 
| 374 | 
            +
                                video_prompt = gr.Textbox(
         | 
| 375 | 
            +
                                    label="Object to track",
         | 
| 376 | 
            +
                                    placeholder="e.g., 'person', 'car', 'ball'",
         | 
| 377 | 
            +
                                    value="person"
         | 
| 378 | 
            +
                                )
         | 
| 379 | 
            +
                                
         | 
| 380 | 
            +
                                detection_interval = gr.Slider(
         | 
| 381 | 
            +
                                    minimum=1,
         | 
| 382 | 
            +
                                    maximum=30,
         | 
| 383 | 
            +
                                    value=5,
         | 
| 384 | 
            +
                                    step=5,
         | 
| 385 | 
            +
                                    label="Detection Interval (frames)",
         | 
| 386 | 
            +
                                    info="Run detection every N frames (1 = every frame, slower but more accurate)"
         | 
| 387 | 
            +
                                )
         | 
| 388 | 
            +
                                
         | 
| 389 | 
            +
                                process_video_btn = gr.Button(value="Process Video", variant="primary")
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                            with gr.Column(scale=2):
         | 
| 392 | 
            +
                                output_video = gr.Video(
         | 
| 393 | 
            +
                                    label="Tracked Video Result",
         | 
| 394 | 
            +
                                    height=400
         | 
| 395 | 
            +
                                )
         | 
| 396 | 
            +
                                video_summary = gr.Textbox(
         | 
| 397 | 
            +
                                    label="Processing Summary",
         | 
| 398 | 
            +
                                    lines=8,
         | 
| 399 | 
            +
                                    show_copy_button=True
         | 
| 400 | 
            +
                                )
         | 
| 401 | 
            +
                        gr.Markdown("### Examples")
         | 
| 402 | 
            +
              
         | 
| 403 | 
            +
                        example_prompts = [
         | 
| 404 | 
            +
                            [
         | 
| 405 | 
            +
                                "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4",
         | 
| 406 | 
            +
                                "snowboarder",
         | 
| 407 | 
            +
                                5
         | 
| 408 | 
            +
                            ],
         | 
| 409 | 
            +
                        ]
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                        gr.Examples(
         | 
| 412 | 
            +
                            examples=example_prompts,
         | 
| 413 | 
            +
                            inputs=[video_input, video_prompt, detection_interval],
         | 
| 414 | 
            +
                            label="Click an example to populate inputs"
         | 
| 415 | 
            +
                        )
         | 
| 416 | 
            +
                def update_max_objects_visibility(task):
         | 
| 417 | 
            +
                    return gr.Number(visible=(task == "Object Detection"))
         | 
| 418 | 
            +
                
         | 
| 419 | 
            +
                task_type.change(
         | 
| 420 | 
            +
                    fn=update_max_objects_visibility,
         | 
| 421 | 
            +
                    inputs=[task_type],
         | 
| 422 | 
            +
                    outputs=[max_objects]
         | 
| 423 | 
            +
                )
         | 
| 424 | 
            +
             | 
| 425 | 
            +
             | 
| 426 | 
            +
                generate_btn.click(
         | 
| 427 | 
            +
                    fn=detect_objects,
         | 
| 428 | 
            +
                    inputs=[image_input, prompt_input, task_type, max_objects],
         | 
| 429 | 
            +
                    outputs=[output_image, output_textbox, output_time]
         | 
| 430 | 
            +
                )
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                process_video_btn.click(
         | 
| 433 | 
            +
                    fn=process_video,
         | 
| 434 | 
            +
                    inputs=[video_input, video_prompt, detection_interval],
         | 
| 435 | 
            +
                    outputs=[output_video, video_summary]
         | 
| 436 | 
            +
                )
         | 
| 437 | 
            +
             | 
| 438 | 
            +
            if __name__ == "__main__":
         | 
| 439 | 
            +
                demo.launch(share=True, debug=True)
         | 
