Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
import re | |
import nltk | |
from PIL import Image | |
import os | |
import numpy as np | |
import seaborn as sns | |
from wordcloud import WordCloud, STOPWORDS | |
from nltk.corpus import stopwords | |
import datasets | |
from datasets import load_dataset | |
import matplotlib.pyplot as plt | |
import sklearn | |
from sklearn.preprocessing import LabelEncoder | |
sns.set_palette("RdBu") | |
# loading dataset | |
dataset = load_dataset("merve/poetry", streaming=True) | |
df = pd.DataFrame.from_dict(dataset["train"]) | |
d = os.path.dirname(__file__) if "__file__" in locals() else os.getcwd() | |
nltk.download("stopwords") | |
stop = stopwords.words('english') | |
# standardizing dataset by removing special characters and lowercasing | |
def standardize(text, remove_digits=True): | |
text=re.sub('[^a-zA-Z\d\s]', '',text) | |
text = text.lower() | |
return text | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
st.write("Poetry dataset, content column cleaned from special characters and lowercased") | |
df.content = df.content.apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)])) | |
df.content=df.content.apply(standardize) | |
st.dataframe(df) | |
st.subheader("Visualization on dataset statistics") | |
st.write("Number of poems written in each type") | |
sns.catplot(x="type", data=df, kind="count") | |
plt.xticks(rotation=0) | |
st.pyplot() | |
st.write("Number of poems for each age") | |
sns.catplot(x="age", data=df, kind="count") | |
plt.xticks(rotation=0) | |
st.pyplot() | |
st.write("Number of poems for each author") | |
sns.catplot(x="author", data=df, kind="count", aspect = 4) | |
plt.xticks(rotation=90) | |
st.pyplot() | |
# distributions of poem types according to ages and authors | |
st.write("Distributions of poem types according to ages and authors, seems that folks in renaissance loved the love themed poems and nature themed poems became popular later") | |
le = LabelEncoder() | |
df.author = le.fit_transform(df.author) | |
sns.catplot(x="age", y="author",hue="type", data=df) | |
st.pyplot() | |
#words = df.content.str.split(expand=True).unstack().value_counts() | |
# most appearing words other than stop words | |
words = df.content.str.split(expand=True).unstack().value_counts() | |
renaissance = df.content.loc[df.age == "Renaissance"].str.split(expand=True).unstack().value_counts() | |
modern = df.content.loc[df.age == "Modern"].str.split(expand=True).unstack().value_counts() | |
st.subheader("Visualizing content") | |
mask = np.array(Image.open(os.path.join(d, "poet.png"))) | |
import matplotlib.pyplot as plt | |
def word_cloud(content, title): | |
wc = WordCloud(background_color="white", max_words=200,contour_width=3, | |
stopwords=STOPWORDS, max_font_size=50) | |
wc.generate(" ".join(content.index.values)) | |
fig = plt.figure(figsize=(10, 10)) | |
plt.title(title, fontsize=20) | |
plt.imshow(wc.recolor(colormap='magma', random_state=42), cmap=plt.cm.gray, interpolation = "bilinear", alpha=0.98) | |
plt.axis('off') | |
st.pyplot() | |
st.subheader("Most appearing words excluding stopwords in poems according to ages") | |
word_cloud(modern, "Word Cloud of Modern Poems") | |
word_cloud(renaissance, "Word Cloud Renaissance Poems") | |
# most appearing words including stopwords | |
st.write("Most appearing words including stopwords") | |
st.bar_chart(words[0:50]) | |