Spaces:
Runtime error
Runtime error
Commit
·
fa02329
1
Parent(s):
69af532
introduce control net from diffusers
Browse files- app.py +0 -44
- image/placeholder.txt +0 -0
- visual_foundation_models.py +2 -13
app.py
CHANGED
|
@@ -42,24 +42,7 @@ Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to
|
|
| 42 |
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
|
| 43 |
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
| 44 |
|
| 45 |
-
import subprocess
|
| 46 |
-
|
| 47 |
-
def execute_cmd(cmd):
|
| 48 |
-
output = subprocess.check_output(cmd, shell=True)
|
| 49 |
-
return output
|
| 50 |
-
|
| 51 |
-
execute_cmd('ln -s ControlNet/ldm ./ldm')
|
| 52 |
-
execute_cmd('ln -s ControlNet/cldm ./cldm')
|
| 53 |
-
execute_cmd('ln -s ControlNet/annotator ./annotator')
|
| 54 |
-
print(execute_cmd('nvidia-smi'))
|
| 55 |
-
print(execute_cmd('nvcc -V'))
|
| 56 |
-
|
| 57 |
-
from diffusers import StableDiffusionPipeline
|
| 58 |
-
from diffusers import StableDiffusionInpaintPipeline
|
| 59 |
-
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
| 60 |
from visual_foundation_models import *
|
| 61 |
-
from omegaconf import OmegaConf
|
| 62 |
-
from ldm.util import instantiate_from_config
|
| 63 |
from langchain.agents.initialize import initialize_agent
|
| 64 |
from langchain.agents.tools import Tool
|
| 65 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
@@ -68,10 +51,6 @@ from langchain.vectorstores import Weaviate
|
|
| 68 |
import re
|
| 69 |
import gradio as gr
|
| 70 |
|
| 71 |
-
try:
|
| 72 |
-
os.mkdir('./image')
|
| 73 |
-
except OSError as error:
|
| 74 |
-
print(error)
|
| 75 |
|
| 76 |
def cut_dialogue_history(history_memory, keep_last_n_words=500):
|
| 77 |
tokens = history_memory.split()
|
|
@@ -87,29 +66,6 @@ def cut_dialogue_history(history_memory, keep_last_n_words=500):
|
|
| 87 |
paragraphs = paragraphs[1:]
|
| 88 |
return '\n' + '\n'.join(paragraphs)
|
| 89 |
|
| 90 |
-
def get_new_image_name(org_img_name, func_name="update"):
|
| 91 |
-
head_tail = os.path.split(org_img_name)
|
| 92 |
-
head = head_tail[0]
|
| 93 |
-
tail = head_tail[1]
|
| 94 |
-
name_split = tail.split('.')[0].split('_')
|
| 95 |
-
this_new_uuid = str(uuid.uuid4())[0:4]
|
| 96 |
-
if len(name_split) == 1:
|
| 97 |
-
most_org_file_name = name_split[0]
|
| 98 |
-
recent_prev_file_name = name_split[0]
|
| 99 |
-
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
| 100 |
-
else:
|
| 101 |
-
assert len(name_split) == 4
|
| 102 |
-
most_org_file_name = name_split[3]
|
| 103 |
-
recent_prev_file_name = name_split[0]
|
| 104 |
-
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
| 105 |
-
return os.path.join(head, new_file_name)
|
| 106 |
-
|
| 107 |
-
def create_model(config_path, device):
|
| 108 |
-
config = OmegaConf.load(config_path)
|
| 109 |
-
OmegaConf.update(config, "model.params.cond_stage_config.params.device", device)
|
| 110 |
-
model = instantiate_from_config(config.model).cpu()
|
| 111 |
-
print(f'Loaded model config from [{config_path}]')
|
| 112 |
-
return model
|
| 113 |
|
| 114 |
class ConversationBot:
|
| 115 |
def __init__(self):
|
|
|
|
| 42 |
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
|
| 43 |
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
from visual_foundation_models import *
|
|
|
|
|
|
|
| 46 |
from langchain.agents.initialize import initialize_agent
|
| 47 |
from langchain.agents.tools import Tool
|
| 48 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
|
|
| 51 |
import re
|
| 52 |
import gradio as gr
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def cut_dialogue_history(history_memory, keep_last_n_words=500):
|
| 56 |
tokens = history_memory.split()
|
|
|
|
| 66 |
paragraphs = paragraphs[1:]
|
| 67 |
return '\n' + '\n'.join(paragraphs)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
class ConversationBot:
|
| 71 |
def __init__(self):
|
image/placeholder.txt
ADDED
|
File without changes
|
visual_foundation_models.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
import diffusers.utils
|
| 4 |
from diffusers import StableDiffusionPipeline
|
| 5 |
from diffusers import StableDiffusionInpaintPipeline
|
| 6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
|
@@ -10,23 +7,15 @@ from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 11 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
| 12 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 13 |
-
|
| 14 |
-
# from ControlNet.cldm.model import create_model, load_state_dict
|
| 15 |
-
# from ControlNet.cldm.ddim_hacked import DDIMSampler
|
| 16 |
-
# from ControlNet.annotator.canny import CannyDetector
|
| 17 |
-
# from ControlNet.annotator.mlsd import MLSDdetector
|
| 18 |
-
# from ControlNet.annotator.hed import HEDdetector, nms
|
| 19 |
-
# from ControlNet.annotator.openpose import OpenposeDetector
|
| 20 |
-
# from ControlNet.annotator.uniformer import UniformerDetector
|
| 21 |
-
# from ControlNet.annotator.midas import MidasDetector
|
| 22 |
from PIL import Image
|
| 23 |
import torch
|
| 24 |
import numpy as np
|
| 25 |
import uuid
|
| 26 |
-
import einops
|
| 27 |
from pytorch_lightning import seed_everything
|
| 28 |
import cv2
|
| 29 |
import random
|
|
|
|
| 30 |
|
| 31 |
def ade_palette():
|
| 32 |
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from diffusers import StableDiffusionPipeline
|
| 2 |
from diffusers import StableDiffusionInpaintPipeline
|
| 3 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 8 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
| 9 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 10 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
import torch
|
| 13 |
import numpy as np
|
| 14 |
import uuid
|
|
|
|
| 15 |
from pytorch_lightning import seed_everything
|
| 16 |
import cv2
|
| 17 |
import random
|
| 18 |
+
import os
|
| 19 |
|
| 20 |
def ade_palette():
|
| 21 |
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|