|
import json |
|
import os |
|
from datetime import datetime, timezone |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import HfApi |
|
|
|
from src.assets.css_html_js import custom_css, get_window_url_params |
|
from src.assets.text_content import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType |
|
from src.display_models.modelcard_filter import check_model_card |
|
from src.display_models.utils import ( |
|
AutoEvalColumn, |
|
EvalQueueColumn, |
|
fields, |
|
styled_error, |
|
styled_message, |
|
styled_warning, |
|
) |
|
from src.load_from_hub import get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub, load_all_info_from_hub |
|
from src.rate_limiting import user_submission_permission |
|
|
|
pd.set_option("display.precision", 1) |
|
|
|
|
|
H4_TOKEN = os.environ.get("H4_TOKEN", None) |
|
|
|
QUEUE_REPO = "open-llm-leaderboard/requests" |
|
RESULTS_REPO = "open-llm-leaderboard/results" |
|
|
|
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests" |
|
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results" |
|
|
|
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) |
|
|
|
EVAL_REQUESTS_PATH = "eval-queue" |
|
EVAL_RESULTS_PATH = "eval-results" |
|
|
|
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" |
|
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" |
|
|
|
api = HfApi(token=H4_TOKEN) |
|
|
|
|
|
def restart_space(): |
|
api.restart_space(repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN) |
|
|
|
|
|
|
|
RATE_LIMIT_PERIOD = 7 |
|
RATE_LIMIT_QUOTA = 5 |
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
|
|
if not IS_PUBLIC: |
|
COLS.insert(2, AutoEvalColumn.precision.name) |
|
TYPES.insert(2, AutoEvalColumn.precision.type) |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [ |
|
c.name |
|
for c in [ |
|
AutoEvalColumn.arc, |
|
AutoEvalColumn.hellaswag, |
|
AutoEvalColumn.mmlu, |
|
AutoEvalColumn.truthfulqa, |
|
] |
|
] |
|
|
|
|
|
eval_queue, requested_models, eval_results, users_to_submission_dates = load_all_info_from_hub( |
|
QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH |
|
) |
|
|
|
if not IS_PUBLIC: |
|
(eval_queue_private, requested_models_private, eval_results_private, _) = load_all_info_from_hub( |
|
PRIVATE_QUEUE_REPO, |
|
PRIVATE_RESULTS_REPO, |
|
EVAL_REQUESTS_PATH_PRIVATE, |
|
EVAL_RESULTS_PATH_PRIVATE, |
|
) |
|
else: |
|
eval_queue_private, eval_results_private = None, None |
|
|
|
original_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS) |
|
models = original_df["model_name_for_query"].tolist() |
|
|
|
to_be_dumped = f"models = {repr(models)}\n" |
|
|
|
leaderboard_df = original_df.copy() |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
|
|
def add_new_eval( |
|
model: str, |
|
base_model: str, |
|
revision: str, |
|
precision: str, |
|
private: bool, |
|
weight_type: str, |
|
model_type: str, |
|
): |
|
precision = precision.split(" ")[0] |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
|
|
if model_type is None or model_type == "": |
|
return styled_error("Please select a model type.") |
|
|
|
|
|
num_models_submitted_in_period = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD) |
|
if num_models_submitted_in_period > RATE_LIMIT_QUOTA: |
|
error_msg = f"Organisation or user `{model.split('/')[0]}`" |
|
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard " |
|
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n" |
|
error_msg += ( |
|
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard π€ |
|
)" |
|
return styled_error(error_msg) |
|
|
|
|
|
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS: |
|
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.") |
|
|
|
|
|
if revision == "": |
|
revision = "main" |
|
|
|
if weight_type in ["Delta", "Adapter"]: |
|
base_model_on_hub, error = is_model_on_hub(base_model, revision) |
|
if not base_model_on_hub: |
|
return styled_error(f'Base model "{base_model}" {error}') |
|
|
|
if not weight_type == "Adapter": |
|
model_on_hub, error = is_model_on_hub(model, revision) |
|
if not model_on_hub: |
|
return styled_error(f'Model "{model}" {error}') |
|
|
|
|
|
modelcard_OK, error_msg = check_model_card(model) |
|
if not modelcard_OK: |
|
return styled_error(error_msg) |
|
|
|
|
|
print("Adding new eval") |
|
|
|
eval_entry = { |
|
"model": model, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"private": private, |
|
"precision": precision, |
|
"weight_type": weight_type, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
"model_type": model_type, |
|
} |
|
|
|
user_name = "" |
|
model_path = model |
|
if "/" in model: |
|
user_name = model.split("/")[0] |
|
model_path = model.split("/")[1] |
|
|
|
print("Creating eval file") |
|
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json" |
|
|
|
|
|
if f"{model}_{revision}_{precision}" in requested_models: |
|
return styled_warning("This model has been already submitted.") |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
print("Uploading eval file") |
|
api.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path.split("eval-queue/")[1], |
|
repo_id=QUEUE_REPO, |
|
repo_type="dataset", |
|
commit_message=f"Add {model} to eval queue", |
|
) |
|
|
|
|
|
os.remove(out_path) |
|
|
|
return styled_message( |
|
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." |
|
) |
|
|
|
|
|
|
|
def change_tab(query_param: str): |
|
query_param = query_param.replace("'", '"') |
|
query_param = json.loads(query_param) |
|
|
|
if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation": |
|
return gr.Tabs.update(selected=1) |
|
else: |
|
return gr.Tabs.update(selected=0) |
|
|
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
current_columns_df: pd.DataFrame, |
|
columns: list, |
|
type_query: list, |
|
precision_query: str, |
|
size_query: list, |
|
show_deleted: bool, |
|
query: str, |
|
): |
|
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) |
|
final_df = [] |
|
if query != "": |
|
queries = query.split(";") |
|
for _q in queries: |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df).drop_duplicates() |
|
df = select_columns(filtered_df, columns) |
|
return df |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
always_here_cols = [ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
|
|
filtered_df = df[ |
|
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] |
|
] |
|
return filtered_df |
|
|
|
|
|
NUMERIC_INTERVALS = { |
|
"Unknown": pd.Interval(-1, 0, closed="right"), |
|
"< 1.5B": pd.Interval(0, 1.5, closed="right"), |
|
"~3B": pd.Interval(1.5, 5, closed="right"), |
|
"~7B": pd.Interval(6, 11, closed="right"), |
|
"~13B": pd.Interval(12, 15, closed="right"), |
|
"~35B": pd.Interval(16, 55, closed="right"), |
|
"60B+": pd.Interval(55, 10000, closed="right"), |
|
} |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool |
|
) -> pd.DataFrame: |
|
|
|
if show_deleted: |
|
filtered_df = df |
|
else: |
|
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] |
|
|
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
return filtered_df |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c |
|
for c in COLS |
|
if c |
|
not in [ |
|
AutoEvalColumn.dummy.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.still_on_hub.name, |
|
] |
|
], |
|
value=[ |
|
c |
|
for c in COLS_LITE |
|
if c |
|
not in [ |
|
AutoEvalColumn.dummy.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.still_on_hub.name, |
|
] |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
deleted_models_visibility = gr.Checkbox( |
|
value=True, label="Show gated/private/deleted models", interactive=True |
|
) |
|
with gr.Column(min_width=320): |
|
with gr.Box(elem_id="box-filter"): |
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model types", |
|
choices=[ |
|
ModelType.PT.to_str(), |
|
ModelType.FT.to_str(), |
|
ModelType.IFT.to_str(), |
|
ModelType.RL.to_str(), |
|
ModelType.Unknown.to_str(), |
|
], |
|
value=[ |
|
ModelType.PT.to_str(), |
|
ModelType.FT.to_str(), |
|
ModelType.IFT.to_str(), |
|
ModelType.RL.to_str(), |
|
ModelType.Unknown.to_str(), |
|
], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"], |
|
value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes", |
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
value=list(NUMERIC_INTERVALS.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df[ |
|
[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] |
|
+ shown_columns.value |
|
+ [AutoEvalColumn.dummy.name] |
|
], |
|
headers=[ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
+ shown_columns.value |
|
+ [AutoEvalColumn.dummy.name], |
|
datatype=TYPES, |
|
max_rows=None, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df, |
|
headers=COLS, |
|
datatype=TYPES, |
|
max_rows=None, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
leaderboard_table, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
) |
|
shown_columns.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
leaderboard_table, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
filter_columns_type.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
leaderboard_table, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
filter_columns_precision.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
leaderboard_table, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
filter_columns_size.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
leaderboard_table, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
deleted_models_visibility.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
leaderboard_table, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="revision", placeholder="main") |
|
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) |
|
model_type = gr.Dropdown( |
|
choices=[ |
|
ModelType.PT.to_str(" : "), |
|
ModelType.FT.to_str(" : "), |
|
ModelType.IFT.to_str(" : "), |
|
ModelType.RL.to_str(" : "), |
|
], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ"], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=["Original", "Delta", "Adapter"], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
private, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
dummy = gr.Textbox(visible=False) |
|
demo.load( |
|
change_tab, |
|
dummy, |
|
tabs, |
|
_js=get_window_url_params, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.queue(concurrency_count=40).launch() |
|
|