Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
unicorn_image_path = "unicorn.png"
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from transformers import (
|
| 11 |
+
DistilBertTokenizerFast,
|
| 12 |
+
DistilBertForSequenceClassification,
|
| 13 |
+
AutoTokenizer,
|
| 14 |
+
AutoModelForSequenceClassification,
|
| 15 |
+
)
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
+
import torch
|
| 18 |
+
import pickle
|
| 19 |
+
import numpy as np
|
| 20 |
+
from tensorflow.keras.models import load_model
|
| 21 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 22 |
+
import re
|
| 23 |
+
|
| 24 |
+
gru_repo_id = "arjahojnik/GRU-sentiment-model"
|
| 25 |
+
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
|
| 26 |
+
gru_model = load_model(gru_model_path)
|
| 27 |
+
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
|
| 28 |
+
with open(gru_tokenizer_path, "rb") as f:
|
| 29 |
+
gru_tokenizer = pickle.load(f)
|
| 30 |
+
|
| 31 |
+
lstm_repo_id = "arjahojnik/LSTM-sentiment-model"
|
| 32 |
+
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="LSTM_model.h5")
|
| 33 |
+
lstm_model = load_model(lstm_model_path)
|
| 34 |
+
lstm_tokenizer_path = hf_hub_download(repo_id=lstm_repo_id, filename="my_tokenizer.pkl")
|
| 35 |
+
with open(lstm_tokenizer_path, "rb") as f:
|
| 36 |
+
lstm_tokenizer = pickle.load(f)
|
| 37 |
+
|
| 38 |
+
bilstm_repo_id = "arjahojnik/BiLSTM-sentiment-model"
|
| 39 |
+
bilstm_model_path = hf_hub_download(repo_id=bilstm_repo_id, filename="BiLSTM_model.h5")
|
| 40 |
+
bilstm_model = load_model(bilstm_model_path)
|
| 41 |
+
bilstm_tokenizer_path = hf_hub_download(repo_id=bilstm_repo_id, filename="my_tokenizer.pkl")
|
| 42 |
+
with open(bilstm_tokenizer_path, "rb") as f:
|
| 43 |
+
bilstm_tokenizer = pickle.load(f)
|
| 44 |
+
|
| 45 |
+
def preprocess_text(text):
|
| 46 |
+
text = text.lower()
|
| 47 |
+
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
|
| 48 |
+
return text
|
| 49 |
+
|
| 50 |
+
def predict_with_gru(text):
|
| 51 |
+
cleaned = preprocess_text(text)
|
| 52 |
+
seq = gru_tokenizer.texts_to_sequences([cleaned])
|
| 53 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 54 |
+
probs = gru_model.predict(padded_seq)
|
| 55 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 56 |
+
return int(predicted_class + 1)
|
| 57 |
+
|
| 58 |
+
def predict_with_lstm(text):
|
| 59 |
+
cleaned = preprocess_text(text)
|
| 60 |
+
seq = lstm_tokenizer.texts_to_sequences([cleaned])
|
| 61 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 62 |
+
probs = lstm_model.predict(padded_seq)
|
| 63 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 64 |
+
return int(predicted_class + 1)
|
| 65 |
+
|
| 66 |
+
def predict_with_bilstm(text):
|
| 67 |
+
cleaned = preprocess_text(text)
|
| 68 |
+
seq = bilstm_tokenizer.texts_to_sequences([cleaned])
|
| 69 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 70 |
+
probs = bilstm_model.predict(padded_seq)
|
| 71 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 72 |
+
return int(predicted_class + 1)
|
| 73 |
+
|
| 74 |
+
models = {
|
| 75 |
+
"DistilBERT": {
|
| 76 |
+
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
| 77 |
+
"model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
|
| 78 |
+
},
|
| 79 |
+
"Logistic Regression": {},
|
| 80 |
+
"BERT Multilingual (NLP Town)": {
|
| 81 |
+
"tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
|
| 82 |
+
"model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
|
| 83 |
+
},
|
| 84 |
+
"TinyBERT": {
|
| 85 |
+
"tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"),
|
| 86 |
+
"model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"),
|
| 87 |
+
},
|
| 88 |
+
"RoBERTa": {
|
| 89 |
+
"tokenizer": AutoTokenizer.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
|
| 90 |
+
"model": AutoModelForSequenceClassification.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
|
| 91 |
+
}
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
logistic_regression_repo = "nhull/logistic-regression-model"
|
| 95 |
+
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
|
| 96 |
+
with open(log_reg_model_path, "rb") as model_file:
|
| 97 |
+
log_reg_model = pickle.load(model_file)
|
| 98 |
+
|
| 99 |
+
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
|
| 100 |
+
with open(vectorizer_path, "rb") as vectorizer_file:
|
| 101 |
+
vectorizer = pickle.load(vectorizer_file)
|
| 102 |
+
|
| 103 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 104 |
+
for model_data in models.values():
|
| 105 |
+
if "model" in model_data:
|
| 106 |
+
model_data["model"].to(device)
|
| 107 |
+
|
| 108 |
+
def predict_with_distilbert(text):
|
| 109 |
+
tokenizer = models["DistilBERT"]["tokenizer"]
|
| 110 |
+
model = models["DistilBERT"]["model"]
|
| 111 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
outputs = model(**encodings)
|
| 114 |
+
logits = outputs.logits
|
| 115 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 116 |
+
return int(predictions[0] + 1)
|
| 117 |
+
|
| 118 |
+
def predict_with_logistic_regression(text):
|
| 119 |
+
transformed_text = vectorizer.transform([text])
|
| 120 |
+
predictions = log_reg_model.predict(transformed_text)
|
| 121 |
+
return int(predictions[0])
|
| 122 |
+
|
| 123 |
+
def predict_with_bert_multilingual(text):
|
| 124 |
+
tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
|
| 125 |
+
model = models["BERT Multilingual (NLP Town)"]["model"]
|
| 126 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
outputs = model(**encodings)
|
| 129 |
+
logits = outputs.logits
|
| 130 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 131 |
+
return int(predictions[0] + 1)
|
| 132 |
+
|
| 133 |
+
def predict_with_tinybert(text):
|
| 134 |
+
tokenizer = models["TinyBERT"]["tokenizer"]
|
| 135 |
+
model = models["TinyBERT"]["model"]
|
| 136 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
outputs = model(**encodings)
|
| 139 |
+
logits = outputs.logits
|
| 140 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 141 |
+
return int(predictions[0] + 1)
|
| 142 |
+
|
| 143 |
+
def predict_with_roberta_ordek899(text):
|
| 144 |
+
tokenizer = models["RoBERTa"]["tokenizer"]
|
| 145 |
+
model = models["RoBERTa"]["model"]
|
| 146 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
| 147 |
+
with torch.no_grad():
|
| 148 |
+
outputs = model(**encodings)
|
| 149 |
+
logits = outputs.logits
|
| 150 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 151 |
+
return int(predictions[0] + 1)
|
| 152 |
+
|
| 153 |
+
def analyze_sentiment_and_statistics(text):
|
| 154 |
+
results = {
|
| 155 |
+
"Logistic Regression": predict_with_logistic_regression(text),
|
| 156 |
+
"GRU Model": predict_with_gru(text),
|
| 157 |
+
"LSTM Model": predict_with_lstm(text),
|
| 158 |
+
"BiLSTM Model": predict_with_bilstm(text),
|
| 159 |
+
"DistilBERT": predict_with_distilbert(text),
|
| 160 |
+
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
| 161 |
+
"TinyBERT": predict_with_tinybert(text),
|
| 162 |
+
"RoBERTa": predict_with_roberta_ordek899(text),
|
| 163 |
+
}
|
| 164 |
+
scores = list(results.values())
|
| 165 |
+
min_score = min(scores)
|
| 166 |
+
max_score = max(scores)
|
| 167 |
+
min_score_models = [model for model, score in results.items() if score == min_score]
|
| 168 |
+
max_score_models = [model for model, score in results.items() if score == max_score]
|
| 169 |
+
average_score = np.mean(scores)
|
| 170 |
+
|
| 171 |
+
if all(score == scores[0] for score in scores):
|
| 172 |
+
statistics = {
|
| 173 |
+
"Message": "All models predict the same score.",
|
| 174 |
+
"Average Score": f"{average_score:.2f}",
|
| 175 |
+
}
|
| 176 |
+
else:
|
| 177 |
+
statistics = {
|
| 178 |
+
"Lowest Score": f"{min_score} (Models: {', '.join(min_score_models)})",
|
| 179 |
+
"Highest Score": f"{max_score} (Models: {', '.join(max_score_models)})",
|
| 180 |
+
"Average Score": f"{average_score:.2f}",
|
| 181 |
+
}
|
| 182 |
+
return results, statistics
|
| 183 |
+
|
| 184 |
+
with gr.Blocks(
|
| 185 |
+
css="""
|
| 186 |
+
.gradio-container {
|
| 187 |
+
max-width: 900px;
|
| 188 |
+
margin: auto;
|
| 189 |
+
padding: 20px;
|
| 190 |
+
}
|
| 191 |
+
h1 {
|
| 192 |
+
text-align: center;
|
| 193 |
+
font-size: 2.5rem;
|
| 194 |
+
}
|
| 195 |
+
.unicorn-image {
|
| 196 |
+
display: block;
|
| 197 |
+
margin: auto;
|
| 198 |
+
width: 300px; /* Larger size */
|
| 199 |
+
height: auto;
|
| 200 |
+
border-radius: 20px;
|
| 201 |
+
margin-bottom: 20px;
|
| 202 |
+
animation: magical-float 5s ease-in-out infinite; /* Gentle floating animation */
|
| 203 |
+
}
|
| 204 |
+
@keyframes magical-float {
|
| 205 |
+
0% {
|
| 206 |
+
transform: translate(0, 0) rotate(0deg); /* Start position */
|
| 207 |
+
}
|
| 208 |
+
25% {
|
| 209 |
+
transform: translate(10px, -10px) rotate(3deg); /* Slightly up and right, tilted */
|
| 210 |
+
}
|
| 211 |
+
50% {
|
| 212 |
+
transform: translate(0, -20px) rotate(0deg); /* Higher point, back to straight */
|
| 213 |
+
}
|
| 214 |
+
75% {
|
| 215 |
+
transform: translate(-10px, -10px) rotate(-3deg); /* Slightly up and left, tilted */
|
| 216 |
+
}
|
| 217 |
+
100% {
|
| 218 |
+
transform: translate(0, 0) rotate(0deg); /* Return to start position */
|
| 219 |
+
}
|
| 220 |
+
}
|
| 221 |
+
footer {
|
| 222 |
+
text-align: center;
|
| 223 |
+
margin-top: 20px;
|
| 224 |
+
font-size: 14px;
|
| 225 |
+
color: gray;
|
| 226 |
+
}
|
| 227 |
+
.custom-analyze-button {
|
| 228 |
+
background-color: #e8a4c9;
|
| 229 |
+
color: white;
|
| 230 |
+
font-size: 1rem;
|
| 231 |
+
padding: 10px 20px;
|
| 232 |
+
border-radius: 10px;
|
| 233 |
+
border: none;
|
| 234 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 235 |
+
transition: transform 0.2s, background-color 0.2s;
|
| 236 |
+
}
|
| 237 |
+
.custom-analyze-button:hover {
|
| 238 |
+
background-color: #d693b8;
|
| 239 |
+
transform: scale(1.05);
|
| 240 |
+
}
|
| 241 |
+
"""
|
| 242 |
+
) as demo:
|
| 243 |
+
gr.Image(
|
| 244 |
+
value=unicorn_image_path,
|
| 245 |
+
type="filepath",
|
| 246 |
+
elem_classes=["unicorn-image"]
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
gr.Markdown("# Sentiment Analysis Demo")
|
| 251 |
+
gr.Markdown(
|
| 252 |
+
"""
|
| 253 |
+
Welcome! A magical unicorn 🦄 will guide you through this sentiment analysis journey! 🎉
|
| 254 |
+
This app lets you explore how different models interpret sentiment and compare their predictions.
|
| 255 |
+
**Enjoy the magic!**
|
| 256 |
+
"""
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
with gr.Row():
|
| 260 |
+
with gr.Column():
|
| 261 |
+
text_input = gr.Textbox(
|
| 262 |
+
label="Enter your text here:",
|
| 263 |
+
lines=3,
|
| 264 |
+
placeholder="Type your hotel/restaurant review here..."
|
| 265 |
+
)
|
| 266 |
+
sample_reviews = [
|
| 267 |
+
"The hotel was fantastic! Clean rooms and excellent service.",
|
| 268 |
+
"The food was horrible, and the staff was rude.",
|
| 269 |
+
"Amazing experience overall. Highly recommend!",
|
| 270 |
+
"It was okay, not great but not terrible either.",
|
| 271 |
+
"Terrible! The room was dirty, and the service was non-existent."
|
| 272 |
+
]
|
| 273 |
+
sample_dropdown = gr.Dropdown(
|
| 274 |
+
choices=["Select an option"] + sample_reviews,
|
| 275 |
+
label="Or select a sample review:",
|
| 276 |
+
value=None,
|
| 277 |
+
interactive=True
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
def update_textbox(selected_sample):
|
| 281 |
+
if selected_sample == "Select an option":
|
| 282 |
+
return ""
|
| 283 |
+
return selected_sample
|
| 284 |
+
|
| 285 |
+
sample_dropdown.change(
|
| 286 |
+
update_textbox,
|
| 287 |
+
inputs=[sample_dropdown],
|
| 288 |
+
outputs=[text_input]
|
| 289 |
+
)
|
| 290 |
+
analyze_button = gr.Button("Analyze Sentiment", elem_classes=["custom-analyze-button"])
|
| 291 |
+
|
| 292 |
+
with gr.Row():
|
| 293 |
+
with gr.Column():
|
| 294 |
+
gr.Markdown("### Machine Learning")
|
| 295 |
+
log_reg_output = gr.Textbox(label="Logistic Regression", interactive=False)
|
| 296 |
+
|
| 297 |
+
with gr.Column():
|
| 298 |
+
gr.Markdown("### Deep Learning")
|
| 299 |
+
gru_output = gr.Textbox(label="GRU Model", interactive=False)
|
| 300 |
+
lstm_output = gr.Textbox(label="LSTM Model", interactive=False)
|
| 301 |
+
bilstm_output = gr.Textbox(label="BiLSTM Model", interactive=False)
|
| 302 |
+
|
| 303 |
+
with gr.Column():
|
| 304 |
+
gr.Markdown("### Transformers")
|
| 305 |
+
distilbert_output = gr.Textbox(label="DistilBERT", interactive=False)
|
| 306 |
+
bert_output = gr.Textbox(label="BERT Multilingual", interactive=False)
|
| 307 |
+
tinybert_output = gr.Textbox(label="TinyBERT", interactive=False)
|
| 308 |
+
roberta_output = gr.Textbox(label="RoBERTa", interactive=False)
|
| 309 |
+
|
| 310 |
+
with gr.Row():
|
| 311 |
+
with gr.Column():
|
| 312 |
+
gr.Markdown("### Feedback")
|
| 313 |
+
feedback_output = gr.Textbox(label="Feedback", interactive=False)
|
| 314 |
+
|
| 315 |
+
with gr.Row():
|
| 316 |
+
with gr.Column():
|
| 317 |
+
gr.Markdown("### Statistics")
|
| 318 |
+
stats_output = gr.Textbox(label="Statistics", interactive=False)
|
| 319 |
+
|
| 320 |
+
gr.Markdown(
|
| 321 |
+
"""
|
| 322 |
+
<footer>
|
| 323 |
+
This demo was built as a part of the NLP course at the University of Zagreb.
|
| 324 |
+
Check out our GitHub repository:
|
| 325 |
+
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank">TripAdvisor Sentiment Analysis</a>
|
| 326 |
+
or explore our HuggingFace collection:
|
| 327 |
+
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank">NLP Zagreb HuggingFace Collection</a>.
|
| 328 |
+
</footer>
|
| 329 |
+
"""
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
def convert_to_stars(rating):
|
| 333 |
+
return "★" * rating + "☆" * (5 - rating)
|
| 334 |
+
|
| 335 |
+
def process_input_and_analyze(text_input):
|
| 336 |
+
if not text_input.strip():
|
| 337 |
+
funny_message = "Are you sure you wrote something? Try again! 🧐"
|
| 338 |
+
return (
|
| 339 |
+
"", "", "", "", "", "", "", "",
|
| 340 |
+
funny_message,
|
| 341 |
+
"No statistics can be shown."
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
if len(text_input.strip()) == 1 or text_input.strip().isdigit():
|
| 345 |
+
funny_message = "Why not write something that makes sense? 🤔"
|
| 346 |
+
return (
|
| 347 |
+
"", "", "", "", "", "", "", "",
|
| 348 |
+
funny_message,
|
| 349 |
+
"No statistics can be shown."
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
if len(text_input.split()) < 5:
|
| 353 |
+
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 354 |
+
short_message = "Maybe try with some longer text next time. 😉"
|
| 355 |
+
stats_text = (
|
| 356 |
+
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\n"
|
| 357 |
+
f"Average Score: {statistics['Average Score']}"
|
| 358 |
+
if "Message" not in statistics else f"Statistics:\n{statistics['Message']}"
|
| 359 |
+
)
|
| 360 |
+
return (
|
| 361 |
+
convert_to_stars(results['Logistic Regression']),
|
| 362 |
+
convert_to_stars(results['GRU Model']),
|
| 363 |
+
convert_to_stars(results['LSTM Model']),
|
| 364 |
+
convert_to_stars(results['BiLSTM Model']),
|
| 365 |
+
convert_to_stars(results['DistilBERT']),
|
| 366 |
+
convert_to_stars(results['BERT Multilingual (NLP Town)']),
|
| 367 |
+
convert_to_stars(results['TinyBERT']),
|
| 368 |
+
convert_to_stars(results['RoBERTa']),
|
| 369 |
+
short_message,
|
| 370 |
+
stats_text
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 374 |
+
feedback_message = "Sentiment analysis completed successfully! 😊"
|
| 375 |
+
|
| 376 |
+
if "Message" in statistics:
|
| 377 |
+
stats_text = f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
|
| 378 |
+
else:
|
| 379 |
+
stats_text = f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
|
| 380 |
+
|
| 381 |
+
return (
|
| 382 |
+
convert_to_stars(results["Logistic Regression"]),
|
| 383 |
+
convert_to_stars(results["GRU Model"]),
|
| 384 |
+
convert_to_stars(results["LSTM Model"]),
|
| 385 |
+
convert_to_stars(results["BiLSTM Model"]),
|
| 386 |
+
convert_to_stars(results["DistilBERT"]),
|
| 387 |
+
convert_to_stars(results["BERT Multilingual (NLP Town)"]),
|
| 388 |
+
convert_to_stars(results["TinyBERT"]),
|
| 389 |
+
convert_to_stars(results["RoBERTa"]),
|
| 390 |
+
feedback_message,
|
| 391 |
+
stats_text
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
analyze_button.click(
|
| 395 |
+
process_input_and_analyze,
|
| 396 |
+
inputs=[text_input],
|
| 397 |
+
outputs=[
|
| 398 |
+
log_reg_output,
|
| 399 |
+
gru_output,
|
| 400 |
+
lstm_output,
|
| 401 |
+
bilstm_output,
|
| 402 |
+
distilbert_output,
|
| 403 |
+
bert_output,
|
| 404 |
+
tinybert_output,
|
| 405 |
+
roberta_output,
|
| 406 |
+
feedback_output,
|
| 407 |
+
stats_output
|
| 408 |
+
]
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
demo.launch()
|