Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import streamlit as st | |
| from transformers import pipeline | |
| from nltk.tokenize import sent_tokenize | |
| import base64 | |
| import torch | |
| import nltk | |
| import os | |
| import tempfile | |
| def init_nltk(): | |
| # β Use a writable temp directory, not /app | |
| nltk_data_dir = os.path.join(tempfile.gettempdir(), "nltk_data") | |
| os.makedirs(nltk_data_dir, exist_ok=True) | |
| # β Register this directory for nltk | |
| if nltk_data_dir not in nltk.data.path: | |
| nltk.data.path.insert(0, nltk_data_dir) | |
| # β Download only required packages | |
| for pkg in ["punkt"]: | |
| try: | |
| nltk.data.find(f"tokenizers/{pkg}") | |
| except LookupError: | |
| nltk.download(pkg, download_dir=nltk_data_dir, quiet=True) | |
| return True | |
| # β Run it once at startup | |
| init_nltk() | |
| # Device detection | |
| DEVICE = 0 if torch.cuda.is_available() else -1 | |
| # Lazy model loading | |
| def get_summarizer(): | |
| if 'summarizer' not in st.session_state: | |
| with st.spinner("π§ Loading AI Brain..."): | |
| st.session_state.summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=DEVICE) | |
| return st.session_state.summarizer | |
| def get_qa(): | |
| if 'qa' not in st.session_state: | |
| with st.spinner("π§ Loading AI Brain..."): | |
| st.session_state.qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=DEVICE) | |
| return st.session_state.qa | |
| def get_classifier(): | |
| if 'classifier' not in st.session_state: | |
| with st.spinner("π§ Loading AI Brain..."): | |
| st.session_state.classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli", device=DEVICE) | |
| return st.session_state.classifier | |
| def load_translator(model_name): | |
| return pipeline("translation", model=model_name, device=DEVICE) | |
| def truncate_text(text, max_words=400): | |
| words = text.split() | |
| return (" ".join(words[:max_words]), len(words) > max_words) | |
| # ULTRA PREMIUM CSS - Glassmorphism + Animations - FIXED HEADER | |
| st.markdown(""" | |
| <style> | |
| @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600;700;900&display=swap'); | |
| * { | |
| font-family: 'Poppins', sans-serif; | |
| } | |
| .stApp { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #4facfe 75%, #00f2fe 100%); | |
| background-size: 400% 400%; | |
| animation: gradientShift 15s ease infinite; | |
| } | |
| @keyframes gradientShift { | |
| 0% { background-position: 0% 50%; } | |
| 50% { background-position: 100% 50%; } | |
| 100% { background-position: 0% 50%; } | |
| } | |
| /* NEW HEADER - Simple and Visible */ | |
| .hero-header { | |
| background: linear-gradient(135deg, #1e1e3f 0%, #2d2d5f 100%); | |
| padding: 3rem 2rem; | |
| border-radius: 25px; | |
| margin-bottom: 2rem; | |
| text-align: center; | |
| box-shadow: 0 20px 60px rgba(0, 0, 0, 0.5); | |
| border: 2px solid #667eea; | |
| } | |
| .hero-title { | |
| font-size: 3.5rem; | |
| font-weight: 900; | |
| color: #ffffff; | |
| margin: 0 0 1rem 0; | |
| text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.5); | |
| } | |
| .hero-subtitle { | |
| font-size: 1.3rem; | |
| color: #ffffff; | |
| margin: 0; | |
| font-weight: 400; | |
| opacity: 0.95; | |
| } | |
| /* Premium Tabs */ | |
| .stTabs [data-baseweb="tab-list"] { | |
| gap: 12px; | |
| background: rgba(255, 255, 255, 0.1); | |
| padding: 12px; | |
| border-radius: 20px; | |
| backdrop-filter: blur(10px); | |
| border: 1px solid rgba(255, 255, 255, 0.2); | |
| } | |
| .stTabs [data-baseweb="tab"] { | |
| background: rgba(255, 255, 255, 0.15); | |
| border-radius: 15px; | |
| color: white; | |
| font-weight: 600; | |
| font-size: 1.1rem; | |
| padding: 12px 24px; | |
| border: 1px solid rgba(255, 255, 255, 0.25); | |
| transition: all 0.3s ease; | |
| text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); | |
| } | |
| .stTabs [data-baseweb="tab"]:hover { | |
| background: rgba(255, 255, 255, 0.25); | |
| transform: translateY(-2px); | |
| box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2); | |
| } | |
| .stTabs [aria-selected="true"] { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
| border-color: rgba(255, 255, 255, 0.4); | |
| box-shadow: 0 8px 24px rgba(102, 126, 234, 0.4); | |
| } | |
| /* Premium Buttons */ | |
| .stButton > button { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
| color: white; | |
| font-weight: 700; | |
| font-size: 1.1rem; | |
| padding: 16px 40px; | |
| border-radius: 16px; | |
| border: none; | |
| box-shadow: 0 8px 24px rgba(102, 126, 234, 0.4); | |
| transition: all 0.3s ease; | |
| width: 100%; | |
| text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); | |
| } | |
| .stButton > button:hover { | |
| transform: translateY(-3px); | |
| box-shadow: 0 12px 36px rgba(102, 126, 234, 0.6); | |
| background: linear-gradient(135deg, #764ba2 0%, #667eea 100%); | |
| } | |
| /* Input Fields */ | |
| .stTextArea textarea, .stTextInput input { | |
| background: rgba(255, 255, 255, 0.2) !important; | |
| backdrop-filter: blur(10px); | |
| border: 2px solid rgba(255, 255, 255, 0.3) !important; | |
| border-radius: 16px !important; | |
| color: white !important; | |
| font-size: 1rem !important; | |
| padding: 16px !important; | |
| text-shadow: 0 1px 2px rgba(0, 0, 0, 0.2); | |
| } | |
| .stTextArea textarea::placeholder, .stTextInput input::placeholder { | |
| color: rgba(255, 255, 255, 0.7) !important; | |
| } | |
| .stTextArea textarea:focus, .stTextInput input:focus { | |
| border-color: rgba(255, 255, 255, 0.6) !important; | |
| box-shadow: 0 0 20px rgba(255, 255, 255, 0.3) !important; | |
| background: rgba(255, 255, 255, 0.25) !important; | |
| } | |
| /* Result Cards */ | |
| .result-card { | |
| background: rgba(255, 255, 255, 0.95); | |
| color: #1a1a1a; | |
| padding: 2rem; | |
| border-radius: 20px; | |
| margin: 1rem 0; | |
| box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2); | |
| animation: fadeIn 0.5s ease; | |
| border-left: 5px solid #667eea; | |
| } | |
| .result-card p { | |
| word-break: break-word; | |
| overflow-wrap: break-word; | |
| max-height: 300px; | |
| overflow-y: auto; | |
| } | |
| @keyframes fadeIn { | |
| from { opacity: 0; transform: translateY(20px); } | |
| to { opacity: 1; transform: translateY(0); } | |
| } | |
| /* Stats Badge */ | |
| .stats-badge { | |
| display: inline-block; | |
| background: rgba(255, 255, 255, 0.25); | |
| backdrop-filter: blur(10px); | |
| padding: 8px 20px; | |
| border-radius: 20px; | |
| color: white; | |
| font-weight: 600; | |
| border: 1px solid rgba(255, 255, 255, 0.3); | |
| margin: 5px; | |
| text-shadow: 0 1px 3px rgba(0, 0, 0, 0.3); | |
| } | |
| /* Success/Error Messages */ | |
| .stSuccess { | |
| background: rgba(72, 187, 120, 0.25) !important; | |
| backdrop-filter: blur(10px); | |
| border-left: 4px solid #48bb78 !important; | |
| border-radius: 12px !important; | |
| color: white !important; | |
| } | |
| .stError { | |
| background: rgba(245, 101, 101, 0.25) !important; | |
| backdrop-filter: blur(10px); | |
| border-left: 4px solid #f56565 !important; | |
| border-radius: 12px !important; | |
| color: white !important; | |
| } | |
| .stInfo { | |
| background: rgba(66, 153, 225, 0.25) !important; | |
| backdrop-filter: blur(10px); | |
| border-left: 4px solid #4299e1 !important; | |
| border-radius: 12px !important; | |
| color: white !important; | |
| } | |
| /* Sidebar */ | |
| .css-1d391kg, [data-testid="stSidebar"] { | |
| background: rgba(20, 20, 40, 0.9); | |
| backdrop-filter: blur(20px); | |
| border-right: 1px solid rgba(255, 255, 255, 0.2); | |
| } | |
| /* Ensure text wraps properly */ | |
| .stTabs h3 { | |
| word-break: break-word; | |
| overflow-wrap: anywhere; | |
| white-space: normal; | |
| max-width: 100%; | |
| margin: 0; | |
| padding: 0.5rem 0; | |
| color: white; | |
| text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); | |
| } | |
| .css-1d391kg h2, [data-testid="stSidebar"] h2 { | |
| color: white; | |
| font-weight: 700; | |
| text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); | |
| } | |
| .css-1d391kg p, [data-testid="stSidebar"] p { | |
| color: rgba(255, 255, 255, 0.9); | |
| } | |
| /* Spinner */ | |
| .stSpinner > div { | |
| border-top-color: white !important; | |
| } | |
| /* Selectbox */ | |
| .stSelectbox > div > div { | |
| background: rgba(255, 255, 255, 0.2) !important; | |
| backdrop-filter: blur(10px); | |
| border-radius: 12px !important; | |
| color: white !important; | |
| border: 2px solid rgba(255, 255, 255, 0.3) !important; | |
| } | |
| .stSelectbox label { | |
| color: white !important; | |
| font-weight: 600 !important; | |
| text-shadow: 0 1px 3px rgba(0, 0, 0, 0.3); | |
| } | |
| /* Footer */ | |
| .premium-footer { | |
| text-align: center; | |
| padding: 2rem; | |
| margin-top: 3rem; | |
| background: rgba(20, 20, 40, 0.85); | |
| backdrop-filter: blur(15px); | |
| border-radius: 20px; | |
| border: 2px solid rgba(255, 255, 255, 0.3); | |
| box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3); | |
| } | |
| .premium-footer p { | |
| color: rgba(255, 255, 255, 0.9); | |
| margin: 0.5rem 0; | |
| text-shadow: 0 1px 3px rgba(0, 0, 0, 0.3); | |
| } | |
| /* Hide Streamlit Branding */ | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| header {visibility: hidden;} | |
| /* Custom scrollbar */ | |
| ::-webkit-scrollbar { | |
| width: 10px; | |
| } | |
| ::-webkit-scrollbar-track { | |
| background: rgba(255, 255, 255, 0.1); | |
| } | |
| ::-webkit-scrollbar-thumb { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
| border-radius: 5px; | |
| } | |
| ::-webkit-scrollbar-thumb:hover { | |
| background: linear-gradient(135deg, #764ba2 0%, #667eea 100%); | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # New Simple Header | |
| st.markdown(""" | |
| <div class="hero-header"> | |
| <div class="hero-title">π§ AI Study Helper Pro</div> | |
| <div class="hero-subtitle">β‘ Supercharge Your Learning with Advanced AI Technology</div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Sidebar | |
| with st.sidebar: | |
| st.markdown("### π― Dashboard") | |
| st.markdown("---") | |
| # Stats | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown('<div class="stats-badge">π 247 Processed</div>', unsafe_allow_html=True) | |
| with col2: | |
| st.markdown('<div class="stats-badge">β‘ 2.3s Avg</div>', unsafe_allow_html=True) | |
| st.markdown("---") | |
| st.markdown("### β¨ Features") | |
| features = [ | |
| "π AI Summarization", | |
| "π¬ Smart Q&A", | |
| "π― Quiz Generator", | |
| "π Multi-Language", | |
| "π Keyword Extraction", | |
| "π¨ Lightning Fast" | |
| ] | |
| for feat in features: | |
| st.markdown(f"**{feat}**") | |
| st.markdown("---") | |
| st.markdown("### π©βπ» Developer") | |
| st.markdown("**Umaima Qureshi**") | |
| st.markdown("[GitHub](https://github.com/Umaima122)") | |
| # Session state | |
| for key in ["summary", "quiz", "translation", "keywords"]: | |
| if key not in st.session_state: | |
| st.session_state[key] = "" if key not in ["quiz", "keywords"] else [] | |
| # Tabs | |
| tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([ | |
| "π Summarize", "π¬ Q&A", "π― Quiz", "π Translate", "π Keywords", "π₯ Download" | |
| ]) | |
| # SUMMARIZE TAB | |
| with tab1: | |
| st.markdown("### π Intelligent Summarization") | |
| text = st.text_area("βοΈ Your notes or textbook:", value="", height=250, key="sum_txt", | |
| placeholder="Paste your content here and watch AI magic happen...") | |
| col1, col2, col3 = st.columns([1, 1, 1]) | |
| with col2: | |
| if st.button("β¨ Generate Summary", key="sum_btn"): | |
| if not text.strip(): | |
| st.error("β οΈ Please provide text to summarize") | |
| else: | |
| trunc, was_trunc = truncate_text(text, 400) | |
| if was_trunc: | |
| st.info("π Text optimized to 400 words") | |
| if len(trunc.split()) < 20: | |
| st.error("β οΈ Need at least 20 words") | |
| else: | |
| with st.spinner("π§ AI is thinking..."): | |
| try: | |
| summarizer = get_summarizer() | |
| result = summarizer(trunc, max_length=130, min_length=30, do_sample=False, truncation=True) | |
| summary = result[0]['summary_text'] | |
| st.markdown(f""" | |
| <div class="result-card"> | |
| <h4 style="color: #667eea; margin-bottom: 1rem;">π AI-Generated Summary</h4> | |
| <p style="font-size: 1.1rem; line-height: 1.8; color: #2d3748;">{summary}</p> | |
| <div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #e2e8f0;"> | |
| <span class="stats-badge" style="background: #667eea; color: white;"> | |
| {len(summary.split())} words | |
| </span> | |
| <span class="stats-badge" style="background: #48bb78; color: white;"> | |
| β Completed | |
| </span> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| st.session_state["summary"] = summary | |
| except Exception as e: | |
| st.error(f"β Error: {str(e)}") | |
| # Q&A TAB | |
| with tab2: | |
| st.markdown("### π¬ Intelligent Q&A System") | |
| context = st.text_area("π Context (Your notes):", value="", height=200, key="qa_ctx", | |
| placeholder="Paste your study material here...") | |
| question = st.text_input("β Ask your question:", key="qa_q", | |
| placeholder="What would you like to know?") | |
| col1, col2, col3 = st.columns([1, 1, 1]) | |
| with col2: | |
| if st.button("π Get Answer", key="qa_btn"): | |
| if not context.strip() or not question.strip(): | |
| st.error("β οΈ Please provide both context and question") | |
| else: | |
| trunc_ctx, _ = truncate_text(context, 400) | |
| with st.spinner("π€ Analyzing..."): | |
| try: | |
| qa_model = get_qa() | |
| answer = qa_model(question=question, context=trunc_ctx)['answer'] | |
| st.markdown(f""" | |
| <div class="result-card"> | |
| <h4 style="color: #667eea; margin-bottom: 1rem;">π‘ AI Answer</h4> | |
| <p style="font-size: 1.2rem; line-height: 1.8; color: #2d3748; font-weight: 500;">{answer}</p> | |
| <div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #e2e8f0;"> | |
| <span class="stats-badge" style="background: #48bb78; color: white;"> | |
| β Answer Found | |
| </span> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| except Exception as e: | |
| st.error(f"β Error: {str(e)}") | |
| # QUIZ TAB | |
| with tab3: | |
| st.markdown("### π― AI Quiz Generator") | |
| quiz_ctx = st.text_area("π Study material:", value="", height=200, key="quiz_ctx", | |
| placeholder="Paste content for quiz generation...") | |
| col1, col2, col3 = st.columns([1, 1, 1]) | |
| with col2: | |
| if st.button("π Generate Quiz", key="quiz_btn"): | |
| if not quiz_ctx.strip(): | |
| st.error("β οΈ Please provide text") | |
| else: | |
| trunc_quiz, _ = truncate_text(quiz_ctx, 200) | |
| with st.spinner("π² Creating questions..."): | |
| sentences = sent_tokenize(trunc_quiz)[:5] | |
| questions = [f"What is the main concept in: '{s[:70]}...'?" for s in sentences] | |
| st.markdown('<div class="result-card">', unsafe_allow_html=True) | |
| st.markdown("<h4 style='color: #667eea;'>π Generated Quiz Questions</h4>", unsafe_allow_html=True) | |
| for i, q in enumerate(questions, 1): | |
| st.markdown(f""" | |
| <div style='background: #f7fafc; padding: 1rem; margin: 0.5rem 0; border-radius: 12px; border-left: 4px solid #667eea;'> | |
| <strong style='color: #667eea;'>Question {i}:</strong> {q} | |
| </div> | |
| """, unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| st.session_state["quiz"] = questions | |
| # TRANSLATE TAB | |
| with tab4: | |
| st.markdown("### π AI Translation") | |
| trans_text = st.text_area("βοΈ Text to translate:", height=200, key="trans_txt", | |
| placeholder="Enter text to translate...") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| lang = st.selectbox("π― Target language:", ["French", "German", "Spanish", "Italian", "Hindi"]) | |
| with col2: | |
| st.write("") | |
| st.write("") | |
| if st.button("π Translate Now", key="trans_btn"): | |
| if not trans_text.strip(): | |
| st.error("β οΈ Please provide text") | |
| else: | |
| model_map = { | |
| "French": "Helsinki-NLP/opus-mt-en-fr", | |
| "German": "Helsinki-NLP/opus-mt-en-de", | |
| "Spanish": "Helsinki-NLP/opus-mt-en-es", | |
| "Italian": "Helsinki-NLP/opus-mt-en-it", | |
| "Hindi": "Helsinki-NLP/opus-mt-en-hi" | |
| } | |
| trunc_trans, _ = truncate_text(trans_text, 200) | |
| with st.spinner(f"π Translating to {lang}..."): | |
| try: | |
| translator = load_translator(model_map[lang]) | |
| translation = translator(trunc_trans, max_length=256)[0]['translation_text'] | |
| st.markdown(f""" | |
| <div class="result-card"> | |
| <h4 style="color: #667eea; margin-bottom: 1rem;">π Translation ({lang})</h4> | |
| <p style="font-size: 1.2rem; line-height: 1.8; color: #2d3748;">{translation}</p> | |
| <div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #e2e8f0;"> | |
| <span class="stats-badge" style="background: #48bb78; color: white;"> | |
| β Translated | |
| </span> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| st.session_state["translation"] = translation | |
| except Exception as e: | |
| st.error(f"β Error: {str(e)}") | |
| # KEYWORDS TAB | |
| with tab5: | |
| st.markdown("### π AI Keyword Extraction") | |
| keyword_input = st.text_area("π Text for analysis:", value="", height=200, key="kw_txt", | |
| placeholder="Paste text to extract key concepts...") | |
| col1, col2, col3 = st.columns([1, 1, 1]) | |
| with col2: | |
| if st.button("π Extract Keywords", key="kw_btn"): | |
| if not keyword_input.strip(): | |
| st.error("β οΈ Please provide text") | |
| else: | |
| trunc_kw, _ = truncate_text(keyword_input, 200) | |
| with st.spinner("π Analyzing concepts..."): | |
| try: | |
| classifier = get_classifier() | |
| labels = ["technology", "science", "education", "health", "business", "finance", "medical"] | |
| result = classifier(trunc_kw, labels) | |
| keywords = [lbl for lbl, score in zip(result['labels'], result['scores']) if score > 0.3][:5] | |
| if keywords: | |
| st.markdown('<div class="result-card">', unsafe_allow_html=True) | |
| st.markdown("<h4 style='color: #667eea;'>π― Extracted Keywords</h4>", unsafe_allow_html=True) | |
| kw_html = " ".join([ | |
| f"<span style='display: inline-block; background: linear-gradient(135deg, #667eea, #764ba2); color: white; padding: 12px 24px; border-radius: 25px; margin: 8px; font-size: 1rem; font-weight: 600; box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);'>{kw}</span>" | |
| for kw in keywords | |
| ]) | |
| st.markdown(kw_html, unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| st.session_state["keywords"] = keywords | |
| else: | |
| st.info("βΉοΈ No strong keywords found") | |
| except Exception as e: | |
| st.error(f"β Error: {str(e)}") | |
| # DOWNLOAD TAB | |
| with tab6: | |
| st.markdown("### π₯ Download Results") | |
| def download_link(text, filename, emoji): | |
| b64 = base64.b64encode(text.encode()).decode() | |
| return f""" | |
| <a href="data:file/txt;base64,{b64}" download="{filename}" | |
| style="display: inline-block; background: linear-gradient(135deg, #667eea, #764ba2); | |
| color: white; padding: 16px 32px; border-radius: 16px; text-decoration: none; | |
| font-weight: 700; font-size: 1.1rem; margin: 10px; box-shadow: 0 8px 24px rgba(102, 126, 234, 0.3); | |
| transition: all 0.3s ease;"> | |
| {emoji} Download {filename} | |
| </a> | |
| """ | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| if st.session_state["summary"]: | |
| st.markdown(download_link(st.session_state["summary"], "summary.txt", "π"), unsafe_allow_html=True) | |
| if st.session_state["quiz"]: | |
| st.markdown(download_link("\n".join(st.session_state["quiz"]), "quiz.txt", "π―"), unsafe_allow_html=True) | |
| with col2: | |
| if st.session_state["translation"]: | |
| st.markdown(download_link(st.session_state["translation"], "translation.txt", "π"), unsafe_allow_html=True) | |
| if st.session_state["keywords"]: | |
| st.markdown(download_link(", ".join(st.session_state["keywords"]), "keywords.txt", "π"), unsafe_allow_html=True) | |
| if not any([st.session_state["summary"], st.session_state["quiz"], | |
| st.session_state["translation"], st.session_state["keywords"]]): | |
| st.info("βΉοΈ Generate content in other tabs to enable downloads") | |
| # Premium Footer | |
| st.markdown(""" | |
| <div class="premium-footer"> | |
| <p style="font-size: 1.2rem; font-weight: 600;">Built with β€οΈ by <span style="background: linear-gradient(135deg, #ffffff, #e0e7ff); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Umaima Qureshi</span></p> | |
| <p style="font-size: 0.9rem;">Β© 2025 AI Study Helper Pro. All Rights Reserved.</p> | |
| <p style="margin-top: 1rem;"> | |
| <a href="https://github.com/Umaima122" target="_blank" | |
| style="color: white; text-decoration: none; padding: 8px 20px; background: rgba(255, 255, 255, 0.15); | |
| border-radius: 20px; backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.3); | |
| transition: all 0.3s ease;"> | |
| π GitHub | |
| </a> | |
| </p> | |
| </div> | |
| """, unsafe_allow_html=True) |