import streamlit as st
from transformers import pipeline
from nltk.tokenize import sent_tokenize
import base64
import torch
import nltk
import os
import tempfile
@st.cache_resource
def init_nltk():
# â
Use a writable temp directory, not /app
nltk_data_dir = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_dir, exist_ok=True)
# â
Register this directory for nltk
if nltk_data_dir not in nltk.data.path:
nltk.data.path.insert(0, nltk_data_dir)
# â
Download only required packages
for pkg in ["punkt"]:
try:
nltk.data.find(f"tokenizers/{pkg}")
except LookupError:
nltk.download(pkg, download_dir=nltk_data_dir, quiet=True)
return True
# â
Run it once at startup
init_nltk()
# Device detection
DEVICE = 0 if torch.cuda.is_available() else -1
# Lazy model loading
def get_summarizer():
if 'summarizer' not in st.session_state:
with st.spinner("đ§ Loading AI Brain..."):
st.session_state.summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=DEVICE)
return st.session_state.summarizer
def get_qa():
if 'qa' not in st.session_state:
with st.spinner("đ§ Loading AI Brain..."):
st.session_state.qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=DEVICE)
return st.session_state.qa
def get_classifier():
if 'classifier' not in st.session_state:
with st.spinner("đ§ Loading AI Brain..."):
st.session_state.classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli", device=DEVICE)
return st.session_state.classifier
@st.cache_resource
def load_translator(model_name):
return pipeline("translation", model=model_name, device=DEVICE)
def truncate_text(text, max_words=400):
words = text.split()
return (" ".join(words[:max_words]), len(words) > max_words)
# ULTRA PREMIUM CSS - Glassmorphism + Animations - FIXED HEADER
st.markdown("""
""", unsafe_allow_html=True)
# New Simple Header
st.markdown("""
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown("### đ¯ Dashboard")
st.markdown("---")
# Stats
col1, col2 = st.columns(2)
with col1:
st.markdown('đ 247 Processed
', unsafe_allow_html=True)
with col2:
st.markdown('⥠2.3s Avg
', unsafe_allow_html=True)
st.markdown("---")
st.markdown("### ⨠Features")
features = [
"đ AI Summarization",
"đŦ Smart Q&A",
"đ¯ Quiz Generator",
"đ Multi-Language",
"đ Keyword Extraction",
"đ¨ Lightning Fast"
]
for feat in features:
st.markdown(f"**{feat}**")
st.markdown("---")
st.markdown("### đŠâđģ Developer")
st.markdown("**Umaima Qureshi**")
st.markdown("[GitHub](https://github.com/Umaima122)")
# Session state
for key in ["summary", "quiz", "translation", "keywords"]:
if key not in st.session_state:
st.session_state[key] = "" if key not in ["quiz", "keywords"] else []
# Tabs
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"đ Summarize", "đŦ Q&A", "đ¯ Quiz", "đ Translate", "đ Keywords", "đĨ Download"
])
# SUMMARIZE TAB
with tab1:
st.markdown("### đ Intelligent Summarization")
text = st.text_area("âī¸ Your notes or textbook:", value="", height=250, key="sum_txt",
placeholder="Paste your content here and watch AI magic happen...")
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("⨠Generate Summary", key="sum_btn"):
if not text.strip():
st.error("â ī¸ Please provide text to summarize")
else:
trunc, was_trunc = truncate_text(text, 400)
if was_trunc:
st.info("đ Text optimized to 400 words")
if len(trunc.split()) < 20:
st.error("â ī¸ Need at least 20 words")
else:
with st.spinner("đ§ AI is thinking..."):
try:
summarizer = get_summarizer()
result = summarizer(trunc, max_length=130, min_length=30, do_sample=False, truncation=True)
summary = result[0]['summary_text']
st.markdown(f"""
đ AI-Generated Summary
{summary}
{len(summary.split())} words
â Completed
""", unsafe_allow_html=True)
st.session_state["summary"] = summary
except Exception as e:
st.error(f"â Error: {str(e)}")
# Q&A TAB
with tab2:
st.markdown("### đŦ Intelligent Q&A System")
context = st.text_area("đ Context (Your notes):", value="", height=200, key="qa_ctx",
placeholder="Paste your study material here...")
question = st.text_input("â Ask your question:", key="qa_q",
placeholder="What would you like to know?")
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("đ Get Answer", key="qa_btn"):
if not context.strip() or not question.strip():
st.error("â ī¸ Please provide both context and question")
else:
trunc_ctx, _ = truncate_text(context, 400)
with st.spinner("đ¤ Analyzing..."):
try:
qa_model = get_qa()
answer = qa_model(question=question, context=trunc_ctx)['answer']
st.markdown(f"""
đĄ AI Answer
{answer}
â Answer Found
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"â Error: {str(e)}")
# QUIZ TAB
with tab3:
st.markdown("### đ¯ AI Quiz Generator")
quiz_ctx = st.text_area("đ Study material:", value="", height=200, key="quiz_ctx",
placeholder="Paste content for quiz generation...")
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("đ Generate Quiz", key="quiz_btn"):
if not quiz_ctx.strip():
st.error("â ī¸ Please provide text")
else:
trunc_quiz, _ = truncate_text(quiz_ctx, 200)
with st.spinner("đ˛ Creating questions..."):
sentences = sent_tokenize(trunc_quiz)[:5]
questions = [f"What is the main concept in: '{s[:70]}...'?" for s in sentences]
st.markdown('', unsafe_allow_html=True)
st.markdown("
đ Generated Quiz Questions
", unsafe_allow_html=True)
for i, q in enumerate(questions, 1):
st.markdown(f"""
Question {i}: {q}
""", unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
st.session_state["quiz"] = questions
# TRANSLATE TAB
with tab4:
st.markdown("### đ AI Translation")
trans_text = st.text_area("âī¸ Text to translate:", height=200, key="trans_txt",
placeholder="Enter text to translate...")
col1, col2 = st.columns(2)
with col1:
lang = st.selectbox("đ¯ Target language:", ["French", "German", "Spanish", "Italian", "Hindi"])
with col2:
st.write("")
st.write("")
if st.button("đ Translate Now", key="trans_btn"):
if not trans_text.strip():
st.error("â ī¸ Please provide text")
else:
model_map = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"German": "Helsinki-NLP/opus-mt-en-de",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Italian": "Helsinki-NLP/opus-mt-en-it",
"Hindi": "Helsinki-NLP/opus-mt-en-hi"
}
trunc_trans, _ = truncate_text(trans_text, 200)
with st.spinner(f"đ Translating to {lang}..."):
try:
translator = load_translator(model_map[lang])
translation = translator(trunc_trans, max_length=256)[0]['translation_text']
st.markdown(f"""
đ Translation ({lang})
{translation}
â Translated
""", unsafe_allow_html=True)
st.session_state["translation"] = translation
except Exception as e:
st.error(f"â Error: {str(e)}")
# KEYWORDS TAB
with tab5:
st.markdown("### đ AI Keyword Extraction")
keyword_input = st.text_area("đ Text for analysis:", value="", height=200, key="kw_txt",
placeholder="Paste text to extract key concepts...")
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("đ Extract Keywords", key="kw_btn"):
if not keyword_input.strip():
st.error("â ī¸ Please provide text")
else:
trunc_kw, _ = truncate_text(keyword_input, 200)
with st.spinner("đ Analyzing concepts..."):
try:
classifier = get_classifier()
labels = ["technology", "science", "education", "health", "business", "finance", "medical"]
result = classifier(trunc_kw, labels)
keywords = [lbl for lbl, score in zip(result['labels'], result['scores']) if score > 0.3][:5]
if keywords:
st.markdown('', unsafe_allow_html=True)
st.markdown("
đ¯ Extracted Keywords
", unsafe_allow_html=True)
kw_html = " ".join([
f"{kw}"
for kw in keywords
])
st.markdown(kw_html, unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
st.session_state["keywords"] = keywords
else:
st.info("âšī¸ No strong keywords found")
except Exception as e:
st.error(f"â Error: {str(e)}")
# DOWNLOAD TAB
with tab6:
st.markdown("### đĨ Download Results")
def download_link(text, filename, emoji):
b64 = base64.b64encode(text.encode()).decode()
return f"""
{emoji} Download {filename}
"""
col1, col2 = st.columns(2)
with col1:
if st.session_state["summary"]:
st.markdown(download_link(st.session_state["summary"], "summary.txt", "đ"), unsafe_allow_html=True)
if st.session_state["quiz"]:
st.markdown(download_link("\n".join(st.session_state["quiz"]), "quiz.txt", "đ¯"), unsafe_allow_html=True)
with col2:
if st.session_state["translation"]:
st.markdown(download_link(st.session_state["translation"], "translation.txt", "đ"), unsafe_allow_html=True)
if st.session_state["keywords"]:
st.markdown(download_link(", ".join(st.session_state["keywords"]), "keywords.txt", "đ"), unsafe_allow_html=True)
if not any([st.session_state["summary"], st.session_state["quiz"],
st.session_state["translation"], st.session_state["keywords"]]):
st.info("âšī¸ Generate content in other tabs to enable downloads")
# Premium Footer
st.markdown("""
""", unsafe_allow_html=True)