|
import torchvision |
|
import random |
|
from PIL import Image, ImageOps |
|
import numpy as np |
|
import numbers |
|
import math |
|
import torch |
|
|
|
|
|
class GroupRandomCrop(object): |
|
def __init__(self, size): |
|
if isinstance(size, numbers.Number): |
|
self.size = (int(size), int(size)) |
|
else: |
|
self.size = size |
|
|
|
def __call__(self, img_group): |
|
|
|
w, h = img_group[0].size |
|
th, tw = self.size |
|
|
|
out_images = list() |
|
|
|
x1 = random.randint(0, w - tw) |
|
y1 = random.randint(0, h - th) |
|
|
|
for img in img_group: |
|
assert(img.size[0] == w and img.size[1] == h) |
|
if w == tw and h == th: |
|
out_images.append(img) |
|
else: |
|
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) |
|
|
|
return out_images |
|
|
|
|
|
class MultiGroupRandomCrop(object): |
|
def __init__(self, size, groups=1): |
|
if isinstance(size, numbers.Number): |
|
self.size = (int(size), int(size)) |
|
else: |
|
self.size = size |
|
self.groups = groups |
|
|
|
def __call__(self, img_group): |
|
|
|
w, h = img_group[0].size |
|
th, tw = self.size |
|
|
|
out_images = list() |
|
|
|
for i in range(self.groups): |
|
x1 = random.randint(0, w - tw) |
|
y1 = random.randint(0, h - th) |
|
|
|
for img in img_group: |
|
assert(img.size[0] == w and img.size[1] == h) |
|
if w == tw and h == th: |
|
out_images.append(img) |
|
else: |
|
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) |
|
|
|
return out_images |
|
|
|
|
|
class GroupCenterCrop(object): |
|
def __init__(self, size): |
|
self.worker = torchvision.transforms.CenterCrop(size) |
|
|
|
def __call__(self, img_group): |
|
return [self.worker(img) for img in img_group] |
|
|
|
|
|
class GroupRandomHorizontalFlip(object): |
|
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5 |
|
""" |
|
|
|
def __init__(self, is_flow=False): |
|
self.is_flow = is_flow |
|
|
|
def __call__(self, img_group, is_flow=False): |
|
v = random.random() |
|
if v < 0.5: |
|
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] |
|
if self.is_flow: |
|
for i in range(0, len(ret), 2): |
|
|
|
ret[i] = ImageOps.invert(ret[i]) |
|
return ret |
|
else: |
|
return img_group |
|
|
|
|
|
class GroupNormalize(object): |
|
def __init__(self, mean, std): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, tensor): |
|
rep_mean = self.mean * (tensor.size()[0] // len(self.mean)) |
|
rep_std = self.std * (tensor.size()[0] // len(self.std)) |
|
|
|
|
|
for t, m, s in zip(tensor, rep_mean, rep_std): |
|
t.sub_(m).div_(s) |
|
|
|
return tensor |
|
|
|
|
|
class GroupScale(object): |
|
""" Rescales the input PIL.Image to the given 'size'. |
|
'size' will be the size of the smaller edge. |
|
For example, if height > width, then image will be |
|
rescaled to (size * height / width, size) |
|
size: size of the smaller edge |
|
interpolation: Default: PIL.Image.BILINEAR |
|
""" |
|
|
|
def __init__(self, size, interpolation=Image.BILINEAR): |
|
self.worker = torchvision.transforms.Resize(size, interpolation) |
|
|
|
def __call__(self, img_group): |
|
return [self.worker(img) for img in img_group] |
|
|
|
|
|
class GroupOverSample(object): |
|
def __init__(self, crop_size, scale_size=None, flip=True): |
|
self.crop_size = crop_size if not isinstance( |
|
crop_size, int) else (crop_size, crop_size) |
|
|
|
if scale_size is not None: |
|
self.scale_worker = GroupScale(scale_size) |
|
else: |
|
self.scale_worker = None |
|
self.flip = flip |
|
|
|
def __call__(self, img_group): |
|
|
|
if self.scale_worker is not None: |
|
img_group = self.scale_worker(img_group) |
|
|
|
image_w, image_h = img_group[0].size |
|
crop_w, crop_h = self.crop_size |
|
|
|
offsets = GroupMultiScaleCrop.fill_fix_offset( |
|
False, image_w, image_h, crop_w, crop_h) |
|
oversample_group = list() |
|
for o_w, o_h in offsets: |
|
normal_group = list() |
|
flip_group = list() |
|
for i, img in enumerate(img_group): |
|
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) |
|
normal_group.append(crop) |
|
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) |
|
|
|
if img.mode == 'L' and i % 2 == 0: |
|
flip_group.append(ImageOps.invert(flip_crop)) |
|
else: |
|
flip_group.append(flip_crop) |
|
|
|
oversample_group.extend(normal_group) |
|
if self.flip: |
|
oversample_group.extend(flip_group) |
|
return oversample_group |
|
|
|
|
|
class GroupFullResSample(object): |
|
def __init__(self, crop_size, scale_size=None, flip=True): |
|
self.crop_size = crop_size if not isinstance( |
|
crop_size, int) else (crop_size, crop_size) |
|
|
|
if scale_size is not None: |
|
self.scale_worker = GroupScale(scale_size) |
|
else: |
|
self.scale_worker = None |
|
self.flip = flip |
|
|
|
def __call__(self, img_group): |
|
|
|
if self.scale_worker is not None: |
|
img_group = self.scale_worker(img_group) |
|
|
|
image_w, image_h = img_group[0].size |
|
crop_w, crop_h = self.crop_size |
|
|
|
w_step = (image_w - crop_w) // 4 |
|
h_step = (image_h - crop_h) // 4 |
|
|
|
offsets = list() |
|
offsets.append((0 * w_step, 2 * h_step)) |
|
offsets.append((4 * w_step, 2 * h_step)) |
|
offsets.append((2 * w_step, 2 * h_step)) |
|
|
|
oversample_group = list() |
|
for o_w, o_h in offsets: |
|
normal_group = list() |
|
flip_group = list() |
|
for i, img in enumerate(img_group): |
|
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) |
|
normal_group.append(crop) |
|
if self.flip: |
|
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) |
|
|
|
if img.mode == 'L' and i % 2 == 0: |
|
flip_group.append(ImageOps.invert(flip_crop)) |
|
else: |
|
flip_group.append(flip_crop) |
|
|
|
oversample_group.extend(normal_group) |
|
oversample_group.extend(flip_group) |
|
return oversample_group |
|
|
|
|
|
class GroupMultiScaleCrop(object): |
|
|
|
def __init__(self, input_size, scales=None, max_distort=1, |
|
fix_crop=True, more_fix_crop=True): |
|
self.scales = scales if scales is not None else [1, .875, .75, .66] |
|
self.max_distort = max_distort |
|
self.fix_crop = fix_crop |
|
self.more_fix_crop = more_fix_crop |
|
self.input_size = input_size if not isinstance(input_size, int) else [ |
|
input_size, input_size] |
|
self.interpolation = Image.BILINEAR |
|
|
|
def __call__(self, img_group): |
|
|
|
im_size = img_group[0].size |
|
|
|
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size) |
|
crop_img_group = [ |
|
img.crop( |
|
(offset_w, |
|
offset_h, |
|
offset_w + |
|
crop_w, |
|
offset_h + |
|
crop_h)) for img in img_group] |
|
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) |
|
for img in crop_img_group] |
|
return ret_img_group |
|
|
|
def _sample_crop_size(self, im_size): |
|
image_w, image_h = im_size[0], im_size[1] |
|
|
|
|
|
base_size = min(image_w, image_h) |
|
crop_sizes = [int(base_size * x) for x in self.scales] |
|
crop_h = [ |
|
self.input_size[1] if abs( |
|
x - self.input_size[1]) < 3 else x for x in crop_sizes] |
|
crop_w = [ |
|
self.input_size[0] if abs( |
|
x - self.input_size[0]) < 3 else x for x in crop_sizes] |
|
|
|
pairs = [] |
|
for i, h in enumerate(crop_h): |
|
for j, w in enumerate(crop_w): |
|
if abs(i - j) <= self.max_distort: |
|
pairs.append((w, h)) |
|
|
|
crop_pair = random.choice(pairs) |
|
if not self.fix_crop: |
|
w_offset = random.randint(0, image_w - crop_pair[0]) |
|
h_offset = random.randint(0, image_h - crop_pair[1]) |
|
else: |
|
w_offset, h_offset = self._sample_fix_offset( |
|
image_w, image_h, crop_pair[0], crop_pair[1]) |
|
|
|
return crop_pair[0], crop_pair[1], w_offset, h_offset |
|
|
|
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h): |
|
offsets = self.fill_fix_offset( |
|
self.more_fix_crop, image_w, image_h, crop_w, crop_h) |
|
return random.choice(offsets) |
|
|
|
@staticmethod |
|
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h): |
|
w_step = (image_w - crop_w) // 4 |
|
h_step = (image_h - crop_h) // 4 |
|
|
|
ret = list() |
|
ret.append((0, 0)) |
|
ret.append((4 * w_step, 0)) |
|
ret.append((0, 4 * h_step)) |
|
ret.append((4 * w_step, 4 * h_step)) |
|
ret.append((2 * w_step, 2 * h_step)) |
|
|
|
if more_fix_crop: |
|
ret.append((0, 2 * h_step)) |
|
ret.append((4 * w_step, 2 * h_step)) |
|
ret.append((2 * w_step, 4 * h_step)) |
|
ret.append((2 * w_step, 0 * h_step)) |
|
|
|
ret.append((1 * w_step, 1 * h_step)) |
|
ret.append((3 * w_step, 1 * h_step)) |
|
ret.append((1 * w_step, 3 * h_step)) |
|
ret.append((3 * w_step, 3 * h_step)) |
|
|
|
return ret |
|
|
|
|
|
class GroupRandomSizedCrop(object): |
|
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size |
|
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio |
|
This is popularly used to train the Inception networks |
|
size: size of the smaller edge |
|
interpolation: Default: PIL.Image.BILINEAR |
|
""" |
|
|
|
def __init__(self, size, interpolation=Image.BILINEAR): |
|
self.size = size |
|
self.interpolation = interpolation |
|
|
|
def __call__(self, img_group): |
|
for attempt in range(10): |
|
area = img_group[0].size[0] * img_group[0].size[1] |
|
target_area = random.uniform(0.08, 1.0) * area |
|
aspect_ratio = random.uniform(3. / 4, 4. / 3) |
|
|
|
w = int(round(math.sqrt(target_area * aspect_ratio))) |
|
h = int(round(math.sqrt(target_area / aspect_ratio))) |
|
|
|
if random.random() < 0.5: |
|
w, h = h, w |
|
|
|
if w <= img_group[0].size[0] and h <= img_group[0].size[1]: |
|
x1 = random.randint(0, img_group[0].size[0] - w) |
|
y1 = random.randint(0, img_group[0].size[1] - h) |
|
found = True |
|
break |
|
else: |
|
found = False |
|
x1 = 0 |
|
y1 = 0 |
|
|
|
if found: |
|
out_group = list() |
|
for img in img_group: |
|
img = img.crop((x1, y1, x1 + w, y1 + h)) |
|
assert(img.size == (w, h)) |
|
out_group.append( |
|
img.resize( |
|
(self.size, self.size), self.interpolation)) |
|
return out_group |
|
else: |
|
|
|
scale = GroupScale(self.size, interpolation=self.interpolation) |
|
crop = GroupRandomCrop(self.size) |
|
return crop(scale(img_group)) |
|
|
|
|
|
class ConvertDataFormat(object): |
|
def __init__(self, model_type): |
|
self.model_type = model_type |
|
|
|
def __call__(self, images): |
|
if self.model_type == '2D': |
|
return images |
|
tc, h, w = images.size() |
|
t = tc // 3 |
|
images = images.view(t, 3, h, w) |
|
images = images.permute(1, 0, 2, 3) |
|
return images |
|
|
|
|
|
class Stack(object): |
|
|
|
def __init__(self, roll=False): |
|
self.roll = roll |
|
|
|
def __call__(self, img_group): |
|
if img_group[0].mode == 'L': |
|
return np.concatenate([np.expand_dims(x, 2) |
|
for x in img_group], axis=2) |
|
elif img_group[0].mode == 'RGB': |
|
if self.roll: |
|
return np.concatenate([np.array(x)[:, :, ::-1] |
|
for x in img_group], axis=2) |
|
else: |
|
|
|
|
|
return np.concatenate(img_group, axis=2) |
|
|
|
|
|
class ToTorchFormatTensor(object): |
|
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] |
|
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """ |
|
|
|
def __init__(self, div=True): |
|
self.div = div |
|
|
|
def __call__(self, pic): |
|
if isinstance(pic, np.ndarray): |
|
|
|
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous() |
|
else: |
|
|
|
img = torch.ByteTensor( |
|
torch.ByteStorage.from_buffer( |
|
pic.tobytes())) |
|
img = img.view(pic.size[1], pic.size[0], len(pic.mode)) |
|
|
|
|
|
img = img.transpose(0, 1).transpose(0, 2).contiguous() |
|
return img.float().div(255) if self.div else img.float() |
|
|
|
|
|
class IdentityTransform(object): |
|
|
|
def __call__(self, data): |
|
return data |
|
|