Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	feat: update app
Browse files- app.py +164 -51
- assets/assistant_avavar.png +0 -0
- requirements.txt +3 -1
    	
        app.py
    CHANGED
    
    | @@ -1,64 +1,177 @@ | |
|  | |
|  | |
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            -
            from huggingface_hub import InferenceClient
         | 
| 3 |  | 
| 4 | 
            -
             | 
| 5 | 
            -
            For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
         | 
| 6 | 
            -
            """
         | 
| 7 | 
            -
            client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
         | 
| 8 |  | 
| 9 |  | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
                history: list[tuple[str, str]],
         | 
| 13 | 
            -
                system_message,
         | 
| 14 | 
            -
                max_tokens,
         | 
| 15 | 
            -
                temperature,
         | 
| 16 | 
            -
                top_p,
         | 
| 17 | 
            -
            ):
         | 
| 18 | 
            -
                messages = [{"role": "system", "content": system_message}]
         | 
| 19 |  | 
| 20 | 
            -
             | 
| 21 | 
            -
                    if val[0]:
         | 
| 22 | 
            -
                        messages.append({"role": "user", "content": val[0]})
         | 
| 23 | 
            -
                    if val[1]:
         | 
| 24 | 
            -
                        messages.append({"role": "assistant", "content": val[1]})
         | 
| 25 |  | 
| 26 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 |  | 
| 28 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 29 |  | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 33 | 
             
                    stream=True,
         | 
|  | |
|  | |
| 34 | 
             
                    temperature=temperature,
         | 
| 35 | 
             
                    top_p=top_p,
         | 
| 36 | 
            -
             | 
| 37 | 
            -
                     | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
                 | 
| 49 | 
            -
             | 
| 50 | 
            -
                     | 
| 51 | 
            -
                     | 
| 52 | 
            -
                     | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
                     | 
| 59 | 
            -
             | 
| 60 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 61 |  | 
| 62 |  | 
| 63 | 
            -
            if __name__ ==  | 
| 64 | 
            -
                 | 
|  | |
| 1 | 
            +
            import gc
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
             | 
| 4 | 
             
            import gradio as gr
         | 
|  | |
| 5 |  | 
| 6 | 
            +
            from llama_cpp import Llama
         | 
|  | |
|  | |
|  | |
| 7 |  | 
| 8 |  | 
| 9 | 
            +
            ALPACA_SYSTEM_PROMPT = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request'
         | 
| 10 | 
            +
            ALPACA_SYSTEM_PROMPT_NO_INPUT = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.'
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
            +
            DEFAULT_MODEL = 'Med-Alpaca-2-7b-chat.Q4_K_M'
         | 
|  | |
|  | |
|  | |
|  | |
| 13 |  | 
| 14 | 
            +
            model_paths = {
         | 
| 15 | 
            +
                'Med-Alpaca-2-7b-chat.Q2_K': {
         | 
| 16 | 
            +
                    'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
         | 
| 17 | 
            +
                    'filename': 'Med-Alpaca-2-7B-chat.Q2_K.gguf',
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                'Med-Alpaca-2-7b-chat.Q4_K_M': {
         | 
| 20 | 
            +
                    'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
         | 
| 21 | 
            +
                    'filename': 'Med-Alpaca-2-7B-chat.Q4_K_M.gguf',
         | 
| 22 | 
            +
                },
         | 
| 23 | 
            +
                'Med-Alpaca-2-7b-chat.Q6_K': {
         | 
| 24 | 
            +
                    'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
         | 
| 25 | 
            +
                    'filename': 'Med-Alpaca-2-7B-chat.Q6_K.gguf',
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                'Med-Alpaca-2-7b-chat.Q8_0': {
         | 
| 28 | 
            +
                    'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
         | 
| 29 | 
            +
                    'filename': 'Med-Alpaca-2-7B-chat.Q8_0.gguf',
         | 
| 30 | 
            +
                },
         | 
| 31 | 
            +
                'Med-Alpaca-2-7b-chat.F16': {
         | 
| 32 | 
            +
                    'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
         | 
| 33 | 
            +
                    'filename': 'Med-Alpaca-2-7B-chat.F16.gguf',
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
            }
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            model = Llama.from_pretrained(
         | 
| 38 | 
            +
                **model_paths[DEFAULT_MODEL],
         | 
| 39 | 
            +
                n_ctx=4096,
         | 
| 40 | 
            +
                n_threads=4,
         | 
| 41 | 
            +
                cache_dir='./hf-cache'
         | 
| 42 | 
            +
            )
         | 
| 43 |  | 
| 44 | 
            +
            def generate_alpaca_prompt(
         | 
| 45 | 
            +
                instruction: str,
         | 
| 46 | 
            +
                input: str | None = None,
         | 
| 47 | 
            +
                response: str = '',
         | 
| 48 | 
            +
            ) -> str:
         | 
| 49 | 
            +
                prompt = ''
         | 
| 50 | 
            +
                if input is not None and input and input.strip() != '<noinput>':
         | 
| 51 | 
            +
                    prompt = (
         | 
| 52 | 
            +
                        f'{ALPACA_SYSTEM_PROMPT}\n\n'
         | 
| 53 | 
            +
                        f'### Instruction:\n'
         | 
| 54 | 
            +
                        f'{instruction}\n\n'
         | 
| 55 | 
            +
                        f'### Input:\n'
         | 
| 56 | 
            +
                        f'{input}\n\n'
         | 
| 57 | 
            +
                        f'### Response: '
         | 
| 58 | 
            +
                        f'{response}'
         | 
| 59 | 
            +
                    )
         | 
| 60 | 
            +
                else:
         | 
| 61 | 
            +
                    prompt = (
         | 
| 62 | 
            +
                        f'{ALPACA_SYSTEM_PROMPT_NO_INPUT}\n\n'
         | 
| 63 | 
            +
                        f'### Instruction:\n'
         | 
| 64 | 
            +
                        f'{instruction}\n\n'
         | 
| 65 | 
            +
                        f'### Response: '
         | 
| 66 | 
            +
                        f'{response}'
         | 
| 67 | 
            +
                    )
         | 
| 68 | 
            +
                return prompt.strip()
         | 
| 69 |  | 
| 70 | 
            +
            def chat_completion(
         | 
| 71 | 
            +
                message,
         | 
| 72 | 
            +
                history,
         | 
| 73 | 
            +
                seed: int,
         | 
| 74 | 
            +
                max_new_tokens: int,
         | 
| 75 | 
            +
                temperature: float,
         | 
| 76 | 
            +
                repeatition_penalty: float,
         | 
| 77 | 
            +
                top_k: int,
         | 
| 78 | 
            +
                top_p: float,
         | 
| 79 | 
            +
            ):
         | 
| 80 | 
            +
                prompt = generate_alpaca_prompt(instruction=message)
         | 
| 81 | 
            +
                response_iterator = model(
         | 
| 82 | 
            +
                    prompt,
         | 
| 83 | 
             
                    stream=True,
         | 
| 84 | 
            +
                    seed=seed,
         | 
| 85 | 
            +
                    max_tokens=max_new_tokens,
         | 
| 86 | 
             
                    temperature=temperature,
         | 
| 87 | 
             
                    top_p=top_p,
         | 
| 88 | 
            +
                    top_k=top_k,
         | 
| 89 | 
            +
                    repeat_penalty=repeatition_penalty,
         | 
| 90 | 
            +
                )
         | 
| 91 | 
            +
                partial_response = ''
         | 
| 92 | 
            +
                for token in response_iterator:
         | 
| 93 | 
            +
                    partial_response += token['choices'][0]['text']
         | 
| 94 | 
            +
                    yield partial_response
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            def on_model_changed(model_name: str):
         | 
| 97 | 
            +
                global model
         | 
| 98 | 
            +
                if 'model' in globals():
         | 
| 99 | 
            +
                    del model
         | 
| 100 | 
            +
                gc.collect()
         | 
| 101 | 
            +
                model = Llama.from_pretrained(
         | 
| 102 | 
            +
                    **model_paths[model_name],
         | 
| 103 | 
            +
                    n_ctx=4096,
         | 
| 104 | 
            +
                    n_threads=4,
         | 
| 105 | 
            +
                    cache_dir='./hf-cache'
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                app_title_mark = gr.Markdown(f"""<center><font size=16>{model_name}</center>""")
         | 
| 109 | 
            +
                chatbot = gr.Chatbot(
         | 
| 110 | 
            +
                    type='messages',
         | 
| 111 | 
            +
                    height=500,
         | 
| 112 | 
            +
                    placeholder='<strong>Hi, I have a headache, what should I do?</strong>',
         | 
| 113 | 
            +
                    label=model_name,
         | 
| 114 | 
            +
                    avatar_images=[None, './assets/assistant_avavar.png'],  # pyright: ignore[reportArgumentType]
         | 
| 115 | 
            +
                )
         | 
| 116 | 
            +
                return app_title_mark, chatbot
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            def main() -> None:
         | 
| 119 | 
            +
                with gr.Blocks(theme=gr.themes.Ocean()) as demo:
         | 
| 120 | 
            +
                    app_title_mark = gr.Markdown(f"""<center><font size=18>{DEFAULT_MODEL}</center>""")
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    model_options = list(model_paths.keys())
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    with gr.Row():
         | 
| 125 | 
            +
                        with gr.Column(scale=2):
         | 
| 126 | 
            +
                            with gr.Row():
         | 
| 127 | 
            +
                                model_radio = gr.Radio(choices=model_options, label='Model', value=DEFAULT_MODEL)
         | 
| 128 | 
            +
                            with gr.Row():
         | 
| 129 | 
            +
                                seed = gr.Number(value=998244353, label='Seed')
         | 
| 130 | 
            +
                                max_new_tokens = gr.Number(value=512, minimum=64, maximum=2048, label='Max new tokens')
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                            with gr.Row():
         | 
| 133 | 
            +
                                temperature = gr.Slider(0, 2, step=0.01, label='Temperature', value=0.6, info='Info')
         | 
| 134 | 
            +
                                repeatition_penalty = gr.Slider(0.01, 5, step=0.05, label='Repetition penalty', value=1.1)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                            with gr.Row():
         | 
| 137 | 
            +
                                top_k = gr.Slider(1, 100, step=1, label='Top k', value=40)
         | 
| 138 | 
            +
                                top_p = gr.Slider(0, 1, step=0.01, label='Top p', value=0.9)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                        with gr.Column(scale=5):
         | 
| 141 | 
            +
                            chatbot = gr.Chatbot(
         | 
| 142 | 
            +
                                type='messages',
         | 
| 143 | 
            +
                                height=500,
         | 
| 144 | 
            +
                                placeholder='<strong>Hi, I have a headache, what should I do?</strong>',
         | 
| 145 | 
            +
                                label=DEFAULT_MODEL,
         | 
| 146 | 
            +
                                avatar_images=[None, './assets/assistant_avavar.png'],  # pyright: ignore[reportArgumentType]
         | 
| 147 | 
            +
                            )
         | 
| 148 | 
            +
                            textbox = gr.Textbox(
         | 
| 149 | 
            +
                                placeholder='Hi, I have a headache, what should I do?',
         | 
| 150 | 
            +
                                container=False,
         | 
| 151 | 
            +
                                submit_btn=True,
         | 
| 152 | 
            +
                                stop_btn=True,
         | 
| 153 | 
            +
                            )
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                            chat_interface = gr.ChatInterface(
         | 
| 156 | 
            +
                                chat_completion,
         | 
| 157 | 
            +
                                type='messages',
         | 
| 158 | 
            +
                                chatbot=chatbot,
         | 
| 159 | 
            +
                                textbox=textbox,
         | 
| 160 | 
            +
                                additional_inputs=[
         | 
| 161 | 
            +
                                    seed,
         | 
| 162 | 
            +
                                    max_new_tokens,
         | 
| 163 | 
            +
                                    temperature,
         | 
| 164 | 
            +
                                    repeatition_penalty,
         | 
| 165 | 
            +
                                    top_k,
         | 
| 166 | 
            +
                                    top_p,
         | 
| 167 | 
            +
                                ],
         | 
| 168 | 
            +
                            )
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    model_radio.change(on_model_changed, inputs=[model_radio], outputs=[app_title_mark, chatbot])
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    demo.queue(api_open=False, default_concurrency_limit=20)
         | 
| 173 | 
            +
                    demo.launch(max_threads=5, share=os.environ.get('GRADIO_SHARE', False))
         | 
| 174 |  | 
| 175 |  | 
| 176 | 
            +
            if __name__ == '__main__':
         | 
| 177 | 
            +
                main()
         | 
    	
        assets/assistant_avavar.png
    ADDED
    
    |   | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1 +1,3 @@ | |
| 1 | 
            -
             | 
|  | |
|  | 
|  | |
| 1 | 
            +
            gradio~=5.6.0
         | 
| 2 | 
            +
            huggingface_hub==0.25.2
         | 
| 3 | 
            +
            llama-cpp-python~=0.3.2
         | 
