article_tagger / train.py
minority169's picture
Upload train.py
91fc0d5 verified
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from sklearn.model_selection import train_test_split
from datasets import Dataset
import torch
from tqdm import tqdm
def load_data(file_path):
df = pd.read_csv(file_path)
return df[['title', 'summary', 'tag']]
def prepare_data(df):
df['text'] = df['title'] + ' ' + df['summary'].fillna('')
unique_tags = df['tag'].unique()
tag2id = {tag: i for i, tag in enumerate(unique_tags)}
id2tag = {i: tag for i, tag in enumerate(unique_tags)}
df['label'] = df['tag'].map(tag2id)
return df, tag2id, id2tag
def train_model(df, model_name="distilbert-base-cased", output_dir="./models"):
df, tag2id, id2tag = prepare_data(df)
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=512)
train_dataset = Dataset.from_pandas(train_df)
test_dataset = Dataset.from_pandas(test_df)
train_dataset = train_dataset.map(tokenize_function, batched=True)
test_dataset = test_dataset.map(tokenize_function, batched=True)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=len(tag2id),
id2label=id2tag,
label2id=tag2id
)
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=1,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
evaluation_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
)
trainer.train()
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
return model, tokenizer, id2tag
if __name__ == "__main__":
df = load_data("../data/arxiv_data.csv")
model, tokenizer, id2tag = train_model(df)
print("успех неизбежен")