create umap function
Browse files
app.py
CHANGED
|
@@ -5,13 +5,9 @@ import umap
|
|
| 5 |
import json
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import os
|
| 8 |
-
# import tempfile
|
| 9 |
import scanpy as sc
|
| 10 |
-
# import argparse
|
| 11 |
import subprocess
|
| 12 |
import sys
|
| 13 |
-
# from evaluate import AnndataProcessor
|
| 14 |
-
# from accelerate import Accelerator
|
| 15 |
from io import BytesIO
|
| 16 |
from sklearn.linear_model import LogisticRegression
|
| 17 |
from huggingface_hub import hf_hub_download
|
|
@@ -40,6 +36,40 @@ def load_and_predict_with_classifier(x, model_path, output_path, save):
|
|
| 40 |
return y_pred
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def main(input_file_path, species, default_dataset):
|
| 44 |
|
| 45 |
# Get the current working directory
|
|
@@ -80,21 +110,12 @@ def main(input_file_path, species, default_dataset):
|
|
| 80 |
from evaluate import AnndataProcessor
|
| 81 |
from accelerate import Accelerator
|
| 82 |
|
| 83 |
-
# # python eval_single_anndata.py --adata_path "./data/10k_pbmcs_proc.h5ad" --dir "./" --model_loc "minwoosun/uce-100m"
|
| 84 |
-
# script_name = "/home/user/app/UCE/eval_single_anndata.py"
|
| 85 |
-
# args = ["--adata_path", input_file_path, "--dir", "/home/user/app/UCE/", "--model_loc", "minwoosun/uce-100m"]
|
| 86 |
-
# command = ["python", script_name] + args
|
| 87 |
-
|
| 88 |
dir_path = '/home/user/app/UCE/'
|
| 89 |
model_loc = 'minwoosun/uce-100m'
|
| 90 |
|
| 91 |
print(input_file_path)
|
| 92 |
print(dir_path)
|
| 93 |
print(model_loc)
|
| 94 |
-
|
| 95 |
-
# # Verify adata_path is not None
|
| 96 |
-
# if input_file_path is None or not os.path.exists(input_file_path):
|
| 97 |
-
# raise ValueError(f"Invalid adata_path: {input_file_path}. Please check if the file exists.")
|
| 98 |
|
| 99 |
# Construct the command
|
| 100 |
command = [
|
|
@@ -118,7 +139,6 @@ def main(input_file_path, species, default_dataset):
|
|
| 118 |
# Cell-type classification #
|
| 119 |
################################
|
| 120 |
|
| 121 |
-
|
| 122 |
# Set output file path
|
| 123 |
file_name_with_ext = os.path.basename(input_file_path)
|
| 124 |
file_name = os.path.splitext(file_name_with_ext)[0]
|
|
@@ -136,49 +156,8 @@ def main(input_file_path, species, default_dataset):
|
|
| 136 |
##############
|
| 137 |
# UMAP #
|
| 138 |
##############
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
if (UMAP):
|
| 142 |
-
|
| 143 |
-
# # Set output file path
|
| 144 |
-
# file_name_with_ext = os.path.basename(input_file_path)
|
| 145 |
-
# file_name = os.path.splitext(file_name_with_ext)[0]
|
| 146 |
-
# output_file = "/home/user/app/UCE/" + f"{file_name}_uce_adata.h5ad"
|
| 147 |
-
|
| 148 |
-
# adata = sc.read_h5ad(output_file)
|
| 149 |
-
|
| 150 |
-
labels = pd.Categorical(adata.obs["cell_type"])
|
| 151 |
-
|
| 152 |
-
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=42)
|
| 153 |
-
embedding = reducer.fit_transform(adata.obsm["X_uce"])
|
| 154 |
-
|
| 155 |
-
plt.figure(figsize=(10, 8))
|
| 156 |
-
|
| 157 |
-
# Create the scatter plot
|
| 158 |
-
scatter = plt.scatter(embedding[:, 0], embedding[:, 1], c=labels.codes, cmap='Set1', s=50, alpha=0.6)
|
| 159 |
-
|
| 160 |
-
# Create a legend
|
| 161 |
-
handles = []
|
| 162 |
-
for i, cell_type in enumerate(labels.categories):
|
| 163 |
-
handles.append(plt.Line2D([0], [0], marker='o', color='w', label=cell_type,
|
| 164 |
-
markerfacecolor=plt.cm.Set1(i / len(labels.categories)), markersize=10))
|
| 165 |
-
|
| 166 |
-
plt.legend(handles=handles, title='Cell Type')
|
| 167 |
-
plt.title('UMAP projection of the data')
|
| 168 |
-
plt.xlabel('UMAP1')
|
| 169 |
-
plt.ylabel('UMAP2')
|
| 170 |
-
|
| 171 |
-
# Save plot to a BytesIO object
|
| 172 |
-
buf = BytesIO()
|
| 173 |
-
plt.savefig(buf, format='png')
|
| 174 |
-
buf.seek(0)
|
| 175 |
-
|
| 176 |
-
# Read the image from BytesIO object
|
| 177 |
-
img = plt.imread(buf, format='png')
|
| 178 |
-
else:
|
| 179 |
-
img = None
|
| 180 |
-
print("no image")
|
| 181 |
-
|
| 182 |
return img, output_file, pred_file
|
| 183 |
|
| 184 |
|
|
|
|
| 5 |
import json
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import os
|
|
|
|
| 8 |
import scanpy as sc
|
|
|
|
| 9 |
import subprocess
|
| 10 |
import sys
|
|
|
|
|
|
|
| 11 |
from io import BytesIO
|
| 12 |
from sklearn.linear_model import LogisticRegression
|
| 13 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 36 |
return y_pred
|
| 37 |
|
| 38 |
|
| 39 |
+
def plot_umap(adata):
|
| 40 |
+
|
| 41 |
+
labels = pd.Categorical(adata.obs["cell_type"])
|
| 42 |
+
|
| 43 |
+
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=42)
|
| 44 |
+
embedding = reducer.fit_transform(adata.obsm["X_uce"])
|
| 45 |
+
|
| 46 |
+
plt.figure(figsize=(10, 8))
|
| 47 |
+
|
| 48 |
+
# Create the scatter plot
|
| 49 |
+
scatter = plt.scatter(embedding[:, 0], embedding[:, 1], c=labels.codes, cmap='Set1', s=50, alpha=0.6)
|
| 50 |
+
|
| 51 |
+
# Create a legend
|
| 52 |
+
handles = []
|
| 53 |
+
for i, cell_type in enumerate(labels.categories):
|
| 54 |
+
handles.append(plt.Line2D([0], [0], marker='o', color='w', label=cell_type,
|
| 55 |
+
markerfacecolor=plt.cm.Set1(i / len(labels.categories)), markersize=10))
|
| 56 |
+
|
| 57 |
+
plt.legend(handles=handles, title='Cell Type')
|
| 58 |
+
plt.title('UMAP projection of the data')
|
| 59 |
+
plt.xlabel('UMAP1')
|
| 60 |
+
plt.ylabel('UMAP2')
|
| 61 |
+
|
| 62 |
+
# Save plot to a BytesIO object
|
| 63 |
+
buf = BytesIO()
|
| 64 |
+
plt.savefig(buf, format='png')
|
| 65 |
+
buf.seek(0)
|
| 66 |
+
|
| 67 |
+
# Read the image from BytesIO object
|
| 68 |
+
img = plt.imread(buf, format='png')
|
| 69 |
+
|
| 70 |
+
return img
|
| 71 |
+
|
| 72 |
+
|
| 73 |
def main(input_file_path, species, default_dataset):
|
| 74 |
|
| 75 |
# Get the current working directory
|
|
|
|
| 110 |
from evaluate import AnndataProcessor
|
| 111 |
from accelerate import Accelerator
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
dir_path = '/home/user/app/UCE/'
|
| 114 |
model_loc = 'minwoosun/uce-100m'
|
| 115 |
|
| 116 |
print(input_file_path)
|
| 117 |
print(dir_path)
|
| 118 |
print(model_loc)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Construct the command
|
| 121 |
command = [
|
|
|
|
| 139 |
# Cell-type classification #
|
| 140 |
################################
|
| 141 |
|
|
|
|
| 142 |
# Set output file path
|
| 143 |
file_name_with_ext = os.path.basename(input_file_path)
|
| 144 |
file_name = os.path.splitext(file_name_with_ext)[0]
|
|
|
|
| 156 |
##############
|
| 157 |
# UMAP #
|
| 158 |
##############
|
| 159 |
+
img = plot_umap(adata)
|
| 160 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
return img, output_file, pred_file
|
| 162 |
|
| 163 |
|