Spaces:
Running
Running
Upload 3 files
Browse files- Dockerfile +32 -0
- app.py +286 -0
- requirements.txt +13 -0
Dockerfile
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## use the official python 3.9 image
|
2 |
+
|
3 |
+
FROM python:3.9
|
4 |
+
|
5 |
+
|
6 |
+
## set the working directory to /code
|
7 |
+
|
8 |
+
WORKDIR /code
|
9 |
+
|
10 |
+
## copy the current directory contents into the container at /code
|
11 |
+
COPY ./requirements.txt /code/requirements.txt
|
12 |
+
|
13 |
+
## Install the requirements.txt
|
14 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
15 |
+
|
16 |
+
# set up a new user named "user"
|
17 |
+
RUN useradd user
|
18 |
+
# Switch to the "user" user
|
19 |
+
USER user
|
20 |
+
|
21 |
+
# set home to the user's home directory
|
22 |
+
ENV HOME=/home/user \
|
23 |
+
PATH=/home/user/.local/bin:$PATH
|
24 |
+
|
25 |
+
# set the working directory to the user's home directory
|
26 |
+
WORKDIR $HOME/app
|
27 |
+
|
28 |
+
# copy the current directory contents into the container at $HOME/app setting the user as the owner to avoid permission issues
|
29 |
+
COPY --chown=user . $HOME/app
|
30 |
+
|
31 |
+
## Start the FASTAPI App on the port 7860
|
32 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import HTMLResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
from huggingface_hub import InferenceClient
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import hashlib
|
13 |
+
import ast
|
14 |
+
import re
|
15 |
+
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
app = FastAPI()
|
22 |
+
|
23 |
+
app.add_middleware(
|
24 |
+
CORSMiddleware,
|
25 |
+
allow_origins=["*"],
|
26 |
+
allow_credentials=True,
|
27 |
+
allow_methods=["*"],
|
28 |
+
allow_headers=["*"],
|
29 |
+
)
|
30 |
+
|
31 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
32 |
+
|
33 |
+
API_TOKEN = os.getenv("HF_TOKEN")
|
34 |
+
if not API_TOKEN:
|
35 |
+
raise ValueError("HUGGINGFACE_API_TOKEN environment variable not set.")
|
36 |
+
|
37 |
+
MODEL_NAME = "bigcode/starcoder"
|
38 |
+
client = InferenceClient(model=MODEL_NAME, token=API_TOKEN)
|
39 |
+
|
40 |
+
UPLOAD_DIR = "uploads"
|
41 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
42 |
+
|
43 |
+
IMAGES_DIR = os.path.join("../static", "images")
|
44 |
+
os.makedirs(IMAGES_DIR, exist_ok=True)
|
45 |
+
|
46 |
+
def detect_plot_type(prompt):
|
47 |
+
"""Detect the requested plot type from the prompt."""
|
48 |
+
prompt_lower = prompt.lower()
|
49 |
+
if "bar" in prompt_lower:
|
50 |
+
return "bar"
|
51 |
+
elif "histogram" in prompt_lower or "distribution" in prompt_lower:
|
52 |
+
return "histogram"
|
53 |
+
elif "line" in prompt_lower:
|
54 |
+
return "line"
|
55 |
+
else:
|
56 |
+
return "scatter"
|
57 |
+
|
58 |
+
@app.post("/upload/")
|
59 |
+
async def upload_file(file: UploadFile = File(...)):
|
60 |
+
if not file.filename.endswith(".xlsx"):
|
61 |
+
raise HTTPException(status_code=400, detail="File must be an Excel file (.xlsx)")
|
62 |
+
|
63 |
+
file_path = os.path.join(UPLOAD_DIR, file.filename)
|
64 |
+
with open(file_path, "wb") as buffer:
|
65 |
+
buffer.write(await file.read())
|
66 |
+
|
67 |
+
logger.info(f"File uploaded: {file.filename}")
|
68 |
+
return {"filename": file.filename}
|
69 |
+
|
70 |
+
@app.post("/generate-visualization/")
|
71 |
+
async def generate_visualization(prompt: str = Form(...), filename: str = Form(...)):
|
72 |
+
file_path = os.path.join(UPLOAD_DIR, filename)
|
73 |
+
|
74 |
+
if not os.path.exists(file_path):
|
75 |
+
raise HTTPException(status_code=404, detail="File not found on server.")
|
76 |
+
|
77 |
+
try:
|
78 |
+
df = pd.read_excel(file_path)
|
79 |
+
if df.empty:
|
80 |
+
raise ValueError("Excel file is empty.")
|
81 |
+
except Exception as e:
|
82 |
+
raise HTTPException(status_code=400, detail=f"Error reading Excel file: {str(e)}")
|
83 |
+
|
84 |
+
plot_type = detect_plot_type(prompt)
|
85 |
+
allow_groupby = "average" in prompt.lower() or "mean" in prompt.lower()
|
86 |
+
|
87 |
+
input_text = f"""
|
88 |
+
You are a Python code generator specializing in data visualization. The DataFrame 'df' is already loaded from an Excel file '{filename}' with columns {', '.join(df.columns)}.
|
89 |
+
|
90 |
+
The user requests: '{prompt}'.
|
91 |
+
|
92 |
+
Instructions:
|
93 |
+
- Generate Python code to create a {plot_type} plot based on the user's natural language prompt using the pre-loaded DataFrame 'df', pandas (pd), matplotlib.pyplot (plt), and seaborn (sns).
|
94 |
+
- Include the following imports at the top of the code, preceded by a comment:
|
95 |
+
# import libraries
|
96 |
+
import pandas as pd
|
97 |
+
import matplotlib.pyplot as plt
|
98 |
+
import seaborn as sns
|
99 |
+
- Include a line to read the DataFrame, preceded by a comment (even though it will be removed during execution):
|
100 |
+
# load data
|
101 |
+
df = pd.read_excel('{filename}')
|
102 |
+
- Add xlabel and ylabel using human-readable forms inferred from the prompt (e.g., 'Petal Length' if the prompt mentions "petal length").
|
103 |
+
- Add a title using plt.title(). Format based on plot type and prompt context:
|
104 |
+
- Scatter: "<X> vs <Y>" or "<X> vs <Y> by <Hue>" if "colored by" is present
|
105 |
+
- Bar: "<Y> by <X>" or "Average <Y> by <X>" if averages are requested
|
106 |
+
- Histogram: "Distribution of <X>"
|
107 |
+
- Line: "<Y> by <X>" or "<X> vs <Y>"
|
108 |
+
- For averages, use df.groupby().mean() if "average" or "mean" is in the prompt.
|
109 |
+
- Plot type specifics:
|
110 |
+
- Scatter: Use sns.scatterplot with hue=<column> if "colored by" is present, else plt.scatter
|
111 |
+
- Bar: Use sns.barplot; apply groupby if averages are requested
|
112 |
+
- Histogram: Use sns.histplot
|
113 |
+
- Line: Use sns.lineplot
|
114 |
+
- Automatically infer column names from the prompt and match them to the exact DataFrame columns ({', '.join(df.columns)}) based on context. Use the exact column names as they appear in the DataFrame.
|
115 |
+
- Include plt.show() at the end (will be removed during execution).
|
116 |
+
- Output only the Python code as valid Python.
|
117 |
+
|
118 |
+
Examples:
|
119 |
+
- For "Create a scatter plot of column1 vs column2":
|
120 |
+
# import libraries
|
121 |
+
import pandas as pd
|
122 |
+
import matplotlib.pyplot as plt
|
123 |
+
import seaborn as sns
|
124 |
+
|
125 |
+
# load data
|
126 |
+
df = pd.read_excel('{filename}')
|
127 |
+
|
128 |
+
sns.scatterplot(x='column1', y='column2', data=df)
|
129 |
+
plt.xlabel('Column 1')
|
130 |
+
plt.ylabel('Column 2')
|
131 |
+
plt.title('Column 1 vs Column 2')
|
132 |
+
|
133 |
+
plt.show()
|
134 |
+
|
135 |
+
- For "Create a scatter plot of column1 vs column2 colored by column3":
|
136 |
+
# import libraries
|
137 |
+
import pandas as pd
|
138 |
+
import matplotlib.pyplot as plt
|
139 |
+
import seaborn as sns
|
140 |
+
|
141 |
+
# load data
|
142 |
+
df = pd.read_excel('{filename}')
|
143 |
+
|
144 |
+
sns.scatterplot(x='column1', y='column2', hue='column3', data=df)
|
145 |
+
plt.xlabel('Column 1')
|
146 |
+
plt.ylabel('Column 2')
|
147 |
+
plt.title('Column 1 vs Column 2 by Column3')
|
148 |
+
|
149 |
+
plt.show()
|
150 |
+
|
151 |
+
- For "Create a bar chart of column1 by column2":
|
152 |
+
# import libraries
|
153 |
+
import pandas as pd
|
154 |
+
import matplotlib.pyplot as plt
|
155 |
+
import seaborn as sns
|
156 |
+
|
157 |
+
# load data
|
158 |
+
df = pd.read_excel('{filename}')
|
159 |
+
|
160 |
+
sns.barplot(x='column2', y='column1', data=df)
|
161 |
+
plt.xlabel('Column 2')
|
162 |
+
plt.ylabel('Column 1')
|
163 |
+
plt.title('Column 1 by Column 2')
|
164 |
+
|
165 |
+
plt.show()
|
166 |
+
|
167 |
+
- For "Create a bar chart of average column1 by column2":
|
168 |
+
# import libraries
|
169 |
+
import pandas as pd
|
170 |
+
import matplotlib.pyplot as plt
|
171 |
+
import seaborn as sns
|
172 |
+
|
173 |
+
# load data
|
174 |
+
df = pd.read_excel('{filename}')
|
175 |
+
|
176 |
+
sns.barplot(x='column2', y='column1', data=df.groupby('column2').mean().reset_index())
|
177 |
+
plt.xlabel('Column 2')
|
178 |
+
plt.ylabel('Average Column 1')
|
179 |
+
plt.title('Average Column 1 by Column 2')
|
180 |
+
|
181 |
+
plt.show()
|
182 |
+
|
183 |
+
- For "Create a histogram of column1":
|
184 |
+
# import libraries
|
185 |
+
import pandas as pd
|
186 |
+
import matplotlib.pyplot as plt
|
187 |
+
import seaborn as sns
|
188 |
+
|
189 |
+
# load data
|
190 |
+
df = pd.read_excel('{filename}')
|
191 |
+
|
192 |
+
sns.histplot(df['column1'])
|
193 |
+
plt.xlabel('Column 1')
|
194 |
+
plt.ylabel('Frequency')
|
195 |
+
plt.title('Distribution of Column 1')
|
196 |
+
|
197 |
+
plt.show()
|
198 |
+
|
199 |
+
- For "Create a line chart of column1 by column2":
|
200 |
+
# import libraries
|
201 |
+
import pandas as pd
|
202 |
+
import matplotlib.pyplot as plt
|
203 |
+
import seaborn as sns
|
204 |
+
|
205 |
+
# load data
|
206 |
+
df = pd.read_excel('{filename}')
|
207 |
+
|
208 |
+
sns.lineplot(x='column2', y='column1', data=df)
|
209 |
+
plt.xlabel('Column 2')
|
210 |
+
plt.ylabel('Column 1')
|
211 |
+
plt.title('Column 1 by Column 2')
|
212 |
+
|
213 |
+
plt.show()
|
214 |
+
|
215 |
+
Generate the code for the user's request now. Output only the Python code, nothing else:
|
216 |
+
"""
|
217 |
+
|
218 |
+
try:
|
219 |
+
raw_generated_code = client.text_generation(input_text, max_new_tokens=400)
|
220 |
+
logger.info(f"Raw generated code: '{raw_generated_code}'")
|
221 |
+
except Exception as e:
|
222 |
+
logger.error(f"Error querying model: {str(e)}")
|
223 |
+
raise HTTPException(status_code=500, detail=f"Error querying model: {str(e)}")
|
224 |
+
|
225 |
+
if not raw_generated_code.strip():
|
226 |
+
logger.error("No code generated by the AI model.")
|
227 |
+
raise HTTPException(status_code=500, detail="No code generated by the AI model.")
|
228 |
+
|
229 |
+
|
230 |
+
cleaned_code = raw_generated_code.strip().replace('```', '').replace('"""', '').replace("'''", '')
|
231 |
+
lines = cleaned_code.splitlines()
|
232 |
+
cleaned_code = "\n".join(
|
233 |
+
line.strip() for line in lines
|
234 |
+
if line.strip()
|
235 |
+
and not line.strip().startswith(('#', 'def', 'class', 'import', 'df ='))
|
236 |
+
and not any(kw in line for kw in ["pd.read_csv", "pd.read_excel", "http", "raise", "print", "plt.show"])
|
237 |
+
and not re.match(r'^\s*\d+\s+.*$', line)
|
238 |
+
and not re.match(r'^\s*$$ .*rows.*columns $$\s*$', line)
|
239 |
+
|
240 |
+
).strip()
|
241 |
+
logger.info(f"Cleaned code: '{cleaned_code}'")
|
242 |
+
|
243 |
+
if not cleaned_code:
|
244 |
+
logger.error("Cleaned code is empty after filtering.")
|
245 |
+
raise HTTPException(status_code=500, detail="Generated code is empty or contains only disallowed content")
|
246 |
+
|
247 |
+
try:
|
248 |
+
ast.parse(cleaned_code)
|
249 |
+
except SyntaxError as e:
|
250 |
+
logger.error(f"Syntax error in cleaned code: '{cleaned_code}' Exception: {str(e)}")
|
251 |
+
raise HTTPException(status_code=500, detail=f"Syntax error in generated code: {str(e)}")
|
252 |
+
|
253 |
+
|
254 |
+
plot_hash = hashlib.md5(f"{filename}_{prompt}".encode()).hexdigest()[:8]
|
255 |
+
plot_filename = f"plot_{plot_hash}.png"
|
256 |
+
plot_path = os.path.join(IMAGES_DIR, plot_filename)
|
257 |
+
|
258 |
+
try:
|
259 |
+
exec_globals = {"pd": pd, "plt": plt, "sns": sns, "df": df}
|
260 |
+
plt.close('all')
|
261 |
+
plt.clf()
|
262 |
+
plt.cla()
|
263 |
+
fig = plt.figure(figsize=(8, 6))
|
264 |
+
exec(cleaned_code, exec_globals)
|
265 |
+
if not fig.get_axes():
|
266 |
+
plt.close('all')
|
267 |
+
raise ValueError("Generated code produced an empty plot")
|
268 |
+
plt.savefig(plot_path, bbox_inches="tight")
|
269 |
+
logger.info(f"Plot saved to {plot_path}")
|
270 |
+
plt.close('all')
|
271 |
+
except Exception as e:
|
272 |
+
plt.close('all')
|
273 |
+
logger.error(f"Error executing cleaned code: '{cleaned_code}' Exception: {str(e)}")
|
274 |
+
raise HTTPException(status_code=500, detail=f"Error executing code: {str(e)}")
|
275 |
+
|
276 |
+
if not os.path.exists(plot_path):
|
277 |
+
raise HTTPException(status_code=500, detail="Plot file was not created.")
|
278 |
+
|
279 |
+
plot_url = f"/static/images/{plot_filename}?t={int(pd.Timestamp.now().timestamp())}"
|
280 |
+
return {"plot_url": plot_url, "generated_code": raw_generated_code}
|
281 |
+
|
282 |
+
@app.get("/")
|
283 |
+
async def serve_frontend():
|
284 |
+
with open("static/index.html", "r") as f:
|
285 |
+
return HTMLResponse(content=f.read())
|
286 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.115.0
|
2 |
+
uvicorn==0.30.6
|
3 |
+
pandas==2.2.2
|
4 |
+
matplotlib==3.9.4
|
5 |
+
seaborn==0.13.2
|
6 |
+
python-multipart==0.0.9
|
7 |
+
transformers==4.45.2
|
8 |
+
torch==2.4.1
|
9 |
+
openpyxl==3.1.5
|
10 |
+
python-dotenv==1.0.1
|
11 |
+
huggingface_hub==0.23.4
|
12 |
+
|
13 |
+
|