Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import HTMLResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
from huggingface_hub import InferenceClient
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import hashlib
|
13 |
+
import textwrap
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Load environment variables (adjust path if needed)
|
20 |
+
load_dotenv("../.env") # Assuming .env is in project/
|
21 |
+
|
22 |
+
app = FastAPI()
|
23 |
+
|
24 |
+
app.add_middleware(
|
25 |
+
CORSMiddleware,
|
26 |
+
allow_origins=["*"],
|
27 |
+
allow_credentials=True,
|
28 |
+
allow_methods=["*"],
|
29 |
+
allow_headers=["*"],
|
30 |
+
)
|
31 |
+
|
32 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
33 |
+
|
34 |
+
|
35 |
+
API_TOKEN = os.getenv("HF_TOKEN")
|
36 |
+
if not API_TOKEN:
|
37 |
+
raise ValueError("HUGGINGFACE_API_TOKEN environment variable not set.")
|
38 |
+
|
39 |
+
#the model is use here using the huggingface inference client
|
40 |
+
MODEL_NAME = "bigcode/starcoder"
|
41 |
+
client = InferenceClient(model=MODEL_NAME, token=API_TOKEN) #for the Api token -->create it in the huggingface account in settings copy it and then create a secret in the space an name it HF_TOKEN and pass it in the value
|
42 |
+
|
43 |
+
#for using the model with transformers(its a big model)
|
44 |
+
# from transformers import pipeline
|
45 |
+
# generator = pipeline("text-generation", model=MODEL_NAME, token=API_TOKEN)
|
46 |
+
|
47 |
+
UPLOAD_DIR = "uploads"
|
48 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
49 |
+
|
50 |
+
IMAGES_DIR = os.path.join("static", "images")
|
51 |
+
os.makedirs(IMAGES_DIR, exist_ok=True)
|
52 |
+
|
53 |
+
@app.post("/upload/")
|
54 |
+
async def upload_file(file: UploadFile = File(...)):
|
55 |
+
if not file.filename.endswith(".xlsx"):
|
56 |
+
raise HTTPException(status_code=400, detail="File must be an Excel file (.xlsx)")
|
57 |
+
|
58 |
+
file_path = os.path.join(UPLOAD_DIR, file.filename)
|
59 |
+
with open(file_path, "wb") as buffer:
|
60 |
+
buffer.write(await file.read())
|
61 |
+
|
62 |
+
logger.info(f"File uploaded: {file.filename}")
|
63 |
+
return {"filename": file.filename}
|
64 |
+
|
65 |
+
@app.post("/generate-visualization/")
|
66 |
+
async def generate_visualization(prompt: str = Form(...), filename: str = Form(...)):
|
67 |
+
file_path = os.path.join(UPLOAD_DIR, filename)
|
68 |
+
|
69 |
+
if not os.path.exists(file_path):
|
70 |
+
raise HTTPException(status_code=404, detail="File not found on server.")
|
71 |
+
|
72 |
+
try:
|
73 |
+
df = pd.read_excel(file_path)
|
74 |
+
if df.empty:
|
75 |
+
raise ValueError("Excel file is empty.")
|
76 |
+
except Exception as e:
|
77 |
+
raise HTTPException(status_code=400, detail=f"Error reading Excel file: {str(e)}")
|
78 |
+
|
79 |
+
input_text = f"""
|
80 |
+
Given the DataFrame 'df =pd.read_excel({filename})' with columns {', '.join(df.columns)} and preview:
|
81 |
+
{df.head().to_string()}
|
82 |
+
Write Python code to: {prompt}
|
83 |
+
- Use ONLY 'df' (no external data loading like pd.read_csv).
|
84 |
+
- Use pandas (pd), matplotlib.pyplot (plt), or seaborn (sns).
|
85 |
+
- Include axis labels and a title.
|
86 |
+
- Output ONLY executable code (no comments, functions, print, or triple quotes).
|
87 |
+
"""
|
88 |
+
|
89 |
+
try:
|
90 |
+
generated_code = client.text_generation(input_text, max_new_tokens=500)
|
91 |
+
logger.info(f"Generated code:\n{generated_code}")
|
92 |
+
except Exception as e:
|
93 |
+
raise HTTPException(status_code=500, detail=f"Error querying model: {str(e)}")
|
94 |
+
|
95 |
+
if not generated_code.strip():
|
96 |
+
raise HTTPException(status_code=500, detail="No code generated by the AI model.")
|
97 |
+
|
98 |
+
generated_code = generated_code.strip()
|
99 |
+
if generated_code.startswith('"""') or generated_code.startswith("'''"):
|
100 |
+
generated_code = generated_code.split('"""')[1] if '"""' in generated_code else generated_code.split("'''")[1]
|
101 |
+
if generated_code.endswith('"""') or generated_code.endswith("'''"):
|
102 |
+
generated_code = generated_code.rsplit('"""')[0] if '"""' in generated_code else generated_code.rsplit("'''")[0]
|
103 |
+
generated_code = generated_code.strip()
|
104 |
+
|
105 |
+
|
106 |
+
lines = generated_code.splitlines()
|
107 |
+
executable_code = "\n".join(
|
108 |
+
line.strip() for line in lines
|
109 |
+
if line.strip() and not line.strip().startswith(('#', 'def', 'class', '"""', "'''"))
|
110 |
+
and not any(kw in line for kw in ["pd.read_csv", "pd.read_excel", "http", "raise", "print"])
|
111 |
+
).strip()
|
112 |
+
|
113 |
+
executable_code = executable_code.replace("plt.show()", "").strip()
|
114 |
+
|
115 |
+
logger.info(f"Executable code:\n{executable_code}")
|
116 |
+
|
117 |
+
plot_hash = hashlib.md5(f"{filename}_{prompt}".encode()).hexdigest()[:8]
|
118 |
+
plot_filename = f"plot_{plot_hash}.png"
|
119 |
+
plot_path = os.path.join(IMAGES_DIR, plot_filename)
|
120 |
+
|
121 |
+
try:
|
122 |
+
exec_globals = {"pd": pd, "plt": plt, "sns": sns, "df": df}
|
123 |
+
exec(executable_code, exec_globals)
|
124 |
+
plt.savefig(plot_path, bbox_inches="tight")
|
125 |
+
plt.close()
|
126 |
+
except Exception as e:
|
127 |
+
logger.error(f"Error executing code:\n{executable_code}\nException: {str(e)}")
|
128 |
+
raise HTTPException(status_code=500, detail=f"Error executing code: {str(e)}")
|
129 |
+
|
130 |
+
if not os.path.exists(plot_path):
|
131 |
+
raise HTTPException(status_code=500, detail="Plot file was not created.")
|
132 |
+
|
133 |
+
return {"plot_url": f"/static/images/{plot_filename}", "generated_code": generated_code}
|
134 |
+
|
135 |
+
@app.get("/")
|
136 |
+
async def serve_frontend():
|
137 |
+
with open("static/index.html", "r") as f:
|
138 |
+
return HTMLResponse(content=f.read())
|