File size: 3,571 Bytes
e370f3a
d1406e8
51ce63b
d1406e8
 
270b445
efbfb8b
bb68426
4b481cd
270b445
51ce63b
 
270b445
 
efbfb8b
e370f3a
18e1fff
 
4b481cd
ad421bc
270b445
 
a4b560c
bb68426
4b481cd
e370f3a
 
 
 
 
0527279
ad421bc
 
4b481cd
 
18e1fff
 
 
 
 
0527279
ad421bc
e370f3a
 
 
 
efa5f27
51ce63b
bb68426
a4b560c
51ce63b
 
 
a4b560c
270b445
aff8a04
51ce63b
4b481cd
e370f3a
ad421bc
e370f3a
4b481cd
e5e2956
4b481cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e2956
 
 
4b481cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e2956
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import requests
import os
import faiss
import numpy as np
import json
from sentence_transformers import SentenceTransformer

# Load RAG content
with open("texts.json", "r", encoding="utf-8") as f:
    texts = json.load(f)

index = faiss.read_index("faiss_index.bin")
embed_model = SentenceTransformer("all-MiniLM-L6-v2")

API_KEY = os.environ.get("OPENROUTER_API_KEY")
MODEL = "qwen/qwen-2.5-coder-32b-instruct:free"

# Search relevant context
def get_context(query, top_k=5):
    query_vec = embed_model.encode([query])
    D, I = index.search(np.array(query_vec), top_k)
    return "\n".join([texts[i] for i in I[0]])

# Chat function
def chat_fn(message, history):
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }

    context = get_context(message)

    system_prompt = f"""You are Codex Assistant by LogIQ Curve β€” a helpful, friendly AI assistant. 
Talk like a smart human. Use the context below to answer:

{context}
"""

    messages = [{"role": "system", "content": system_prompt}]

    for user, assistant in history:
        messages.append({"role": "user", "content": user})
        messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    payload = {
        "model": MODEL,
        "messages": messages
    }

    try:
        response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload)
        response.raise_for_status()
        reply = response.json()["choices"][0]["message"]["content"]
    except Exception as e:
        reply = f"❌ Error: {e}"

    return reply

# Custom CSS for full screen & styling
custom_css = """
* {
    font-family: 'Segoe UI', sans-serif;
}
footer, button[data-testid="settings-button"] {
    display: none !important;
}
#chat-container {
    display: flex;
    flex-direction: column;
    height: 100vh;
}
#chat-window {
    flex: 1;
    overflow-y: auto;
    padding: 16px;
}
#input-row {
    display: flex;
    padding: 10px;
    border-top: 1px solid #ddd;
}
textarea {
    flex: 1;
    resize: none;
    padding: 10px;
    font-size: 1rem;
}
button {
    margin-left: 8px;
}
.message.user {
    background-color: #daf0ff;
    padding: 10px 15px;
    border-radius: 10px;
    align-self: flex-end;
    margin: 5px 0;
    max-width: 80%;
}
.message.ai {
    background-color: #f0f0f0;
    padding: 10px 15px;
    border-radius: 10px;
    align-self: flex-start;
    margin: 5px 0;
    max-width: 80%;
}
"""

with gr.Blocks(css=custom_css) as demo:
    chatbot_state = gr.State([])

    with gr.Column(elem_id="chat-container"):
        chatbox = gr.HTML('<div id="chat-window"></div>', elem_id="chat-window")
        with gr.Row(elem_id="input-row"):
            msg = gr.Textbox(placeholder="Type your message here...", lines=1, scale=8, show_label=False)
            send = gr.Button("Send", scale=1)

    def update_chat(message, state):
        state.append(("user", message))
        response = chat_fn(message, [(u, a) for i, (u, a) in enumerate(zip(state[::2], state[1::2]))])
        state.append(("ai", response))

        html = ""
        for role, content in state:
            bubble_class = "user" if role == "user" else "ai"
            html += f'<div class="message {bubble_class}">{content}</div>'

        return html, state, ""

    send.click(update_chat, [msg, chatbot_state], [chatbox, chatbot_state, msg])
    msg.submit(update_chat, [msg, chatbot_state], [chatbox, chatbot_state, msg])

demo.launch()