mirxakamran893's picture
Update app.py
39f5430 verified
raw
history blame
2.58 kB
import gradio as gr
import requests
import os
import faiss
import numpy as np
import json
from sentence_transformers import SentenceTransformer
# βœ… Load context
with open("texts.json", "r", encoding="utf-8") as f:
texts = json.load(f)
index = faiss.read_index("faiss_index.bin")
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
# βœ… API Setup
API_KEY = os.environ.get("OPENROUTER_API_KEY")
MODEL = "meta-llama/llama-3.3-8b-instruct:free"
# βœ… Context search
def get_context(query, top_k=5, min_score=0.05):
query_vec = embed_model.encode([query])
D, I = index.search(np.array(query_vec), top_k)
# If top score is too low, reject
if D[0][0] < min_score:
return None
return "\n".join([texts[i] for i in I[0]])
# βœ… Chat function
def chat_fn(message, history):
context = get_context(message)
if context is None:
return history[:-1] + [(message, "❌ Sorry! I cannot answer that.")]
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
messages = [
{
"role": "system",
"content": f"You are a helpful assistant. Use ONLY this context to answer:\n{context}\nIf not found in context, reply: 'Sorry! I cannot answer that.'"
}
]
for user, assistant in history[:-1]:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
payload = {
"model": MODEL,
"messages": messages
}
try:
response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload)
response.raise_for_status()
reply = response.json()["choices"][0]["message"]["content"]
except Exception as e:
reply = f"❌ Error: {e}"
return history[:-1] + [(message, reply)]
# βœ… UI
with gr.Blocks(css="""
.footer {display: none !important;}
#chat-window {height: 500px !important; overflow-y: auto;}
""") as demo:
chatbot = gr.Chatbot(elem_id="chat-window")
state = gr.State([])
with gr.Row():
msg = gr.Textbox(placeholder="Type your message and press enter...", scale=9)
# Typing sim
def user_send(message, history):
return "", history + [(message, "⏳ ...")]
def complete_chat(message, history):
return chat_fn(message, history)
msg.submit(user_send, [msg, state], [msg, chatbot]).then(
complete_chat, [msg, state], [chatbot]
)
demo.launch()