|
import gradio as gr |
|
import faiss |
|
import numpy as np |
|
import json |
|
import os |
|
import requests |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
|
|
with open("texts.json", "r") as f: |
|
texts = json.load(f) |
|
|
|
index = faiss.read_index("faiss_index.bin") |
|
text_embeddings = embed_model.encode(texts) |
|
|
|
|
|
API_KEY = os.environ.get("OPENROUTER_API_KEY") |
|
MODEL = "deepseek/deepseek-chat-v3-0324:free" |
|
|
|
def get_relevant_context(question, top_k=3, threshold=0.6): |
|
question_embedding = embed_model.encode([question]) |
|
distances, indices = index.search(np.array(question_embedding), top_k) |
|
|
|
context = [] |
|
for i, dist in zip(indices[0], distances[0]): |
|
if dist < threshold: |
|
context.append(texts[i]) |
|
return context |
|
|
|
def chat_with_data(message, history): |
|
context = get_relevant_context(message) |
|
if not context: |
|
return "β Sorry, I can only help with topics related to LogiqCurve." |
|
|
|
context_text = "\n".join(context) |
|
prompt = f"You are a helpful assistant for LogiqCurve. Use only the following context:\n\n{context_text}\n\nUser: {message}" |
|
|
|
messages = [{"role": "system", "content": "You are a helpful assistant that only uses provided context."}] |
|
messages.append({"role": "user", "content": prompt}) |
|
|
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
payload = { |
|
"model": MODEL, |
|
"messages": messages |
|
} |
|
|
|
try: |
|
res = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload) |
|
res.raise_for_status() |
|
reply = res.json()["choices"][0]["message"]["content"] |
|
except Exception as e: |
|
reply = f"β Error: {e}" |
|
|
|
return reply |
|
|
|
gr.ChatInterface( |
|
fn=chat_with_data, |
|
title="LogiqCurve Assistant", |
|
description="Ask anything about LogiqCurve (based on website data only)", |
|
theme="soft" |
|
).launch() |
|
|